A limited memory algorithm for inequality constrained minimization

A method for solving inequality constrained minimization problems is described. The algorithm is based on a primal-dual interior point approach, with a line search globalization strategy. A quasi-Newton technique (BFGS) with limited memory storage is used to approximate the second derivatives of the functions. The method is especially intended for solving problems with a large … Read more

Interior-Point Algorithms, Penalty Methods and Equilibrium Problems

In this paper we consider the question of solving equilibrium problems—formulated as complementarity problems and, more generally, mathematical programs with equilibrium constraints (MPEC’s)—as nonlinear programs, using an interior-point approach. These problems pose theoretical difficulties for nonlinear solvers, including interior-point methods. We examine the use of penalty methods to get around these difficulties, present an example … Read more

An Algorithm for Degenerate Nonlinear Programming with Rapid Local Convergence

The paper describes and analyzes an algorithmic framework for solving nonlinear programming problems in which strict complementarity conditions and constraint qualifications are not necessarily satisfied at a solution. The framework is constructed from three main algorithmic ingredients. The first is any conventional method for nonlinear programming that produces estimates of the Lagrange multipliers at each … Read more

Parallel Interior Point Solver for Structured Quadratic Programs: Application to Financial Planning Problems

Issues of implementation of a library for parallel interior-point methods for quadratic programming are addressed. The solver can easily exploit any special structure of the underlying optimization problem. In particular, it allows a nested embedding of structures and by this means very complicated real-life optimization problems can be modeled. The efficiency of the solver is … Read more

Convex- and Monotone- Transformable Mathematical Programming Problems and a Proximal-Like Point Method

The problem of finding singularities of monotone vectors fields on Hadamard manifolds will be considered and solved by extending the well-known proximal point algorithm. For monotone vector fields the algorithm will generate a well defined sequence, and for monotone vector fields with singularities it will converge to a singularity. It will be also shown how … Read more

KNITRO-Direct: A Hybrid Interior Algorithm for Nonlinear Optimization

A hybrid interior-point method for nonlinear programming is presented. It enjoys the flexibility of switching between a line search based method which computes steps by factoring the primal-dual equations and an iterative method using a conjugate gradient algorithm and globalized by means of trust regions. Steps computed by a direct factorization are always tried first, … Read more

Intermediate Report on the development of an optimization code for smooth, high computing load, continuous objective functions when derivatives are not available

We find very often in the industry simulators of huge chemical reactors, simulators of huge turbo-compressors, simulators of the path of a satellite in low orbit around earth, … These simulators were written to allow the design engineer to correctly estimate the consequences of the adjustment of one (or many) design variables (or parameters of … Read more

Double-Regularization Proximal Methods, with Complementarity Applications

We consider the variational inequality problem formed by a general set-valued maximal monotone operator and a possibly unbounded “box” in $R^n$, and study its solution by proximal methods whose distance regularizations are coercive over the box. We prove convergence for a class of double regularizations generalizing a previously-proposed class of Auslender et al. We apply … Read more

The continuous Newton-Raphson method can look ahead

This paper is about an intriguing property of the continuous Newton-Raphson method for the minimization of a continuous objective function f: if x is a point in the domain of attraction of a strict local minimizer x* then the flux line of the Newton-Raphson flow that starts in x approaches x* from a direction that … Read more

A Wide Interval for Efficient Self-Scaling Quasi-Newton Algorithms

This paper uses certain conditions for the global and superlinear convergence of the two-parameter self-scaling Broyden family of quasi-Newton algorithms for unconstraiend optimization to derive a wide interval for self-scaling updates. Numerical testing shows that such algorithms not only accelerate the convergence of the (unscaled) methods from the so-called convex class, but increase their chances … Read more