Semidefinite Approximations for Global Unconstrained Polynomial Optimization

We consider here the problem of minimizing a polynomial function on $\oR^n$. The problem is known to be hard even for degree $4$. Therefore approximation algorithms are of interest. Lasserre \cite{lasserre:2001} and Parrilo \cite{Pa02a} have proposed approximating the minimum of the original problem using a hierarchy of lower bounds obtained via semidefinite programming relaxations. We … Read more

A moment approach to analyze zeros of triangular polynomial sets

Let $I=(g_1,…, g_n)$ be a zero-dimensional ideal of $ \R[x_1,…,x_n]$ such that its associated set $G$ of polynomial equations $g_i(x)=0$ for all $i=1,…,n$, is in triangular form. By introducing multivariate Newton sums we provide a numerical characterization of polynomials in the radical ideal of $I$. We also provide a necessary and sufficient (numerical) condition for … Read more

On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming

We present a primal-dual interior-point algorithm with a filter line-search method for nonlinear programming. Local and global convergence properties of this method were analyzed in previous work. Here we provide a comprehensive description of the algorithm, including the feasibility restoration phase for the filter method, second-order corrections, and inertia correction of the KKT matrix. Heuristics … Read more

A filter-trust-region method for unconstrained optimization

A new filter-trust-region algorithm for solving unconstrained nonlinear optimization problems is introduced. Based on the filter technique introduced by Fletcher and Leyffer, it extends an existing technique of Gould, Leyffer and Toint (SIAM J. Optim., to appear 2004) for nonlinear equations and nonlinear least-squares to the fully general unconstrained optimization problem. The new algorithm is … Read more

Solving nonconvex SDP problems of structural optimization with stability control

The goal of this paper is to formulate and solve structural optimization problems with constraints on the global stability of the structure. The stability constraint is based on the linear buckling phenomenon. We formulate the problem as a nonconvex semidefinite programming problem and introduce an algorithm based on the Augmented Lagrangian method combined with the … Read more

On the modeling and control of delamination processes

This paper is motivated by problem of optimal shape design of laminated elastic bodies. We use a recently introduced model of delamination, based on minimization of potential energy which includes the free (Gibbs-type) energy and (pseudo)potential of dissipative forces, to introduce and analyze a special mathematical program with equilibrium constraints. The equilibrium is governed by … Read more

A sufficient optimality criteria for linearly constrained, separable concave minimization problems

Sufficient optimality criteria for linearly constrained, concave minimization problems is given in this paper. Our optimality criteria is based on the sensitivity analysis of the relaxed linear programming problem. Our main result is similar to that of Phillips and Rosen (1993), however our proofs are simpler and constructive. Phillips and Rosen (1993) in their paper … Read more

On the Global Minimization of the Value-at-Risk

In this paper, we consider the nonconvex minimization problem of the value-at-risk (VaR) that arises from financial risk analysis. By considering this problem as a special linear program with linear complementarity constraints (a bilevel linear program to be more precise), we develop upper and lower bounds for the minimum VaR and show how the combined … Read more

On an Approximation of the Hessian of the Lagrangian

In the context of SQP methods or, more recently, of sequential semidefinite programming methods, it is common practice to construct a positive semidefinite approximation of the Hessian of the Lagrangian. The Hessian of the augmented Lagrangian is a suitable approximation as it maintains local superlinear convergence under appropriate assumptions. In this note we give a … Read more

Some Properties of Regularization and Penalization Schemes for MPECs

Some properties of regularized and penalized nonlinear programming formulations of mathematical programs with equilibrium constraints (MPECs) are described. The focus is on the properties of these formulations near a local solution of the MPEC at which strong stationarity and a second-order sufficient condition are satisfied. In the regularized formulations, the complementarity condition is replaced by … Read more