Convexity and continuity of specific set-valued maps and their extremal value functions

In this paper, we study several classes of set-valued maps, which can be used in set-valued optimization and its applications, and their respective maximum and minimum value functions. The definitions of these maps are based on scalar-valued, vector-valued, and cone-valued maps. Moreover, we consider those extremal value functions which are obtained when optimizing linear functionals … Read more

A practical second-order optimality condition for cardinality-constrained problems with application to an augmented Lagrangian method

This paper addresses the mathematical programs with cardinality constraints (MPCaC). We first define two new tailored (strong and weak) second-order necessary conditions, MPCaC-SSONC and MPCaC-WSONC. We then propose a constraint qualification (CQ), namely, MPCaC-relaxed constant rank constraint qualification (MPCaC-RCRCQ), and establish the validity of MPCaC-SSONC at minimizers under this new CQ. All proposed concepts are … Read more

Riemannian Interior Point Methods for Constrained Optimization on Manifolds

We extend the classical primal-dual interior point method from the Euclidean setting to the Riemannian one. Our method, named the Riemannian interior point method (RIPM), is for solving Riemannian  constrained optimization problems. We establish its local superlinear and quadratic convergence  under the standard assumptions. Moreover, we show its global convergence when it is combined with … Read more

A decomposition method for lasso problems with zero-sum constraint

In this paper, we consider lasso problems with zero-sum constraint, commonly required for the analysis of compositional data in high-dimensional spaces. A novel algorithm is proposed to solve these problems, combining a tailored active-set technique, to identify the zero variables in the optimal solution, with a 2-coordinate descent scheme. At every iteration, the algorithm chooses … Read more

Advancements in the computation of enclosures for multi-objective optimization problems

A central goal for multi-objective optimization problems is to compute their nondominated sets. In most cases these sets consist of infinitely many points and it is not a practical approach to compute them exactly. One solution to overcome this problem is to compute an enclosure, a special kind of coverage, of the nondominated set. One … Read more

Accelerating Stochastic Sequential Quadratic Programming for Equality Constrained Optimization using Predictive Variance Reduction

In this paper, we propose a stochastic variance reduction method for solving equality constrained optimization problems. Specifically, we develop a method based on the sequential quadratic programming paradigm that utilizes gradient approximations via predictive variance reduction techniques. Under reasonable assumptions, we prove that a measure of first-order stationarity evaluated at the iterates generated by our … Read more

An Adaptive Riemannian Gradient Method Without Function Evaluations

In this paper we propose an adaptive gradient method for optimization on Riemannian manifolds. The update rule for the stepsizes relies only on gradient evaluations. Assuming that the objective function is bounded from below and that its gradient field is Lipschitz continuous, we establish worst-case complexity bounds for the number of gradient evaluations that the … Read more

Direct search based on probabilistic descent in reduced spaces

Derivative-free algorithms seek the minimum value of a given objective function without using any derivative information. The performance of these methods often worsen as the dimension increases, a phenomenon predicted by their worst-case complexity guarantees. Nevertheless, recent algorithmic proposals have shown that incorporating randomization into otherwise deterministic frameworks could alleviate this effect for direct-search methods. … Read more

Learning for Spatial Branching: An Algorithm Selection Approach

The use of machine learning techniques to improve the performance of branch-and-bound optimization algorithms is a very active area in the context of mixed integer linear problems, but little has been done for non-linear optimization. To bridge this gap, we develop a learning framework for spatial branching and show its efficacy in the context of … Read more

A general mathematical framework for constrained mixed-variable blackbox optimization problems with meta and categorical variables

A mathematical framework for modelling constrained mixed-variable optimization problems is presented in a blackbox optimization context. The framework introduces a new notation and allows solution strategies. The notation framework allows meta and categorical variables to be explicitly and efficiently modelled, which facilitates the solution of such problems. The new term meta variables is used to … Read more