Continuous selections of solutions for locally Lipschitzian equations

This paper answers in affirmative the long-standing question of nonlinear analysis, concerning the existence of a continuous single-valued local selection of the right inverse to a locally Lipschitzian mapping. Moreover, we develop a much more general result, providing conditions for the existence of a continuous single-valued selection not only locally, but rather on any given … Read more

Stochastic generalized gradient methods for training nonconvex nonsmooth neural networks

The paper observes a similarity between the stochastic optimal control of discrete dynamical systems and the learning multilayer neural networks. It focuses on contemporary deep networks with nonconvex nonsmooth loss and activation functions. The machine learning problems are treated as nonconvex nonsmooth stochastic optimization problems. As a model of nonsmooth nonconvex dependences, the so-called generalized … Read more

An analysis of the superiorization method via the principle of concentration of measure

The superiorization methodology is intended to work with input data of constrained minimization problems, i.e., a target function and a constraints set. However, it is based on an antipodal way of thinking to the thinking that leads constrained minimization methods. Instead of adapting unconstrained minimization algorithms to handling constraints, it adapts feasibility-seeking algorithms to reduce … Read more

An Infeasible Interior-point Arc-search Algorithm for Nonlinear Constrained Optimization

In this paper, we propose an infeasible arc-search interior-point algorithm for solving nonlinear programming problems. Most algorithms based on interior-point methods are categorized as line search in the sense that they compute a next iterate on a straight line determined by a search direction which approximates the central path. The proposed arc-search interior-point algorithm uses … Read more

Worst-case Complexity Bounds of Directional Direct-search Methods for Multiobjective Optimization

Direct Multisearch is a well-established class of algorithms, suited for multiobjective derivative-free optimization. In this work, we analyze the worst-case complexity of this class of methods in its most general formulation for unconstrained optimization. Considering nonconvex smooth functions, we show that to drive a given criticality measure below a specific positive threshold, Direct Multisearch takes … Read more

Substantiation of the Backpropagation Technique via the Hamilton-Pontryagin Formalism for Training Nonconvex Nonsmooth Neural Networks

The paper observes the similarity between the stochastic optimal control of discrete dynamical systems and the training multilayer neural networks. It focuses on contemporary deep networks with nonconvex nonsmooth loss and activation functions. In the paper, the machine learning problems are treated as nonconvex nonsmooth stochastic optimization problems. As a model of nonsmooth nonconvex dependences, … Read more

On the Convergence to Stationary Points of Deterministic and Randomized Feasible Descent Directions Methods

This paper studies the class of nonsmooth nonconvex problems in which the difference between a continuously differentiable function and a convex nonsmooth function is minimized over linear constraints. Our goal is to attain a point satisfying the stationarity necessary optimality condition, defined as the lack of feasible descent directions. Although elementary in smooth optimization, this … Read more

Finding Second-Order Stationary Points in Constrained Minimization: A Feasible Direction Approach

This paper introduces a method for computing points satisfying the second-order necessary optimality conditions in constrained nonconvex minimization. The method comprises two independent steps corresponding to the first and second order conditions. The first-order step is a generic closed map algorithm which can be chosen from a variety of first-order algorithms, making it The second-order … Read more

A relaxed interior point method for low-rank semidefinite programming problems with applications to matrix completion

A new relaxed variant of interior point method for low-rank semidefinite programming problems is proposed in this paper. The method is a step outside of the usual interior point framework. In anticipation to converging to a low-rank primal solution, a special nearly low-rank form of all primal iterates is imposed. To accommodate such a (restrictive) … Read more

Mixed-Integer Optimal Control under Minimum Dwell Time Constraints

Tailored mixed-integer optimal control policies for real-world applications usually have to avoid very short successive changes of the active integer control. Minimum dwell time constraints express this requirement and can be included into the combinatorial integral approximation decomposition, which solves mixed-integer optimal control problems by solving one continuous nonlinear program and one mixed-integer linear program. … Read more