A Personalized Switched Systems Approach for the Optimal Control of Ventricular Assist Devices based on Atrioventricular Plane Displacement

Objective: A promising treatment for congestive heart failure is the implementation of a left ventricular assist device (LVAD) that works as a mechanical pump. Modern LVADs work with adjustable constant rotor speed and provide therefore continuous blood flow; however, recently undertaken efforts try to mimic pulsatile blood flow by oscillating the pump speed. This work … Read more

Riemannian conjugate gradient methods with inverse retraction

We propose a new class of Riemannian conjugate gradient (CG) methods, in which inverse retraction is used instead of vector transport for search direction construction. In existing methods, differentiated retraction is often used for vector transport to move the previous search direction to the current tangent space. However, a different perspective is adopted here, motivated … Read more

Two novel gradient methods with optimal step sizes

In this work we introduce two new Barzilai and Borwein-like steps sizes for the classical gradient method for strictly convex quadratic optimization problems. The proposed step sizes employ second-order information in order to obtain faster gradient-type methods. Both step sizes are derived from two unconstrained optimization models that involve approximate information of the Hessian of … Read more

Solving nonlinear systems of equations via spectral residual methods: stepsize selection and applications

Spectral residual methods are derivative-free and low-cost per iteration procedures for solving nonlinear systems of equations. They are generally coupled with a nonmonotone linesearch strategy and compare well with Newton-based methods for large nonlinear systems and sequences of nonlinear systems. The residual vector is used as the search direction and choosing the steplength has a … Read more

High-order Evaluation Complexity of a Stochastic Adaptive Regularization Algorithm for Nonconvex Optimization Using Inexact Function Evaluations and Randomly Perturbed Derivatives

A stochastic adaptive regularization algorithm allowing random noise in derivatives and inexact function values is proposed for computing strong approximate minimizers of any order for inexpensively constrained smooth optimization problems. For an objective function with Lipschitz continuous p-th derivative in a convex neighbourhood of the feasible set and given an arbitrary optimality order q, it … Read more

A derivative-free method for structured optimization problems

Structured optimization problems are ubiquitous in fields like data science and engineering. The goal in structured optimization is using a prescribed set of points, called atoms, to build up a solution that minimizes or maximizes a given function. In the present paper, we want to minimize a black-box function over the convex hull of a … Read more

On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming

Jordan Algebras are an important tool for dealing with semidefinite programming and optimization over symmetric cones in general. In this paper, a judicious use of Jordan Algebras in the context of sequential optimality conditions is done in order to generalize the global convergence theory of an Augmented Lagrangian method for nonlinear semidefinite programming. An approximate … Read more

A Primal–Dual Penalty Method via Rounded Weighted-\boldmath{$\ell_1$} Lagrangian Duality

We propose a new duality scheme based on a sequence of smooth minorants of the weighted-$\ell_1$ penalty function, interpreted as a parametrized sequence of augmented Lagrangians, to solve nonconvex and nonsmooth constrained optimization problems. For the induced sequence of dual problems, we establish strong asymptotic duality properties. Namely, we show that (i) the sequence of … Read more

On Inexact Accelerated Proximal Gradient Methods with Relative Error Rules

One of the most popular and important first-order iterations that provides optimal complexity of the classical proximal gradient method (PGM) is the “Fast Iterative Shrinkage/Thresholding Algorithm” (FISTA). In this paper, two inexact versions of FISTA for minimizing the sum of two convex functions are studied. The proposed schemes inexactly solve their subproblems by using relative … Read more

Iteration-complexity of an inexact proximal accelerated augmented Lagrangian method for solving linearly constrained smooth nonconvex composite optimization problems

This paper proposes and establishes the iteration-complexity of an inexact proximal accelerated augmented Lagrangian (IPAAL) method for solving linearly constrained smooth nonconvex composite optimization problems. Each IPAAL iteration consists of inexactly solving a proximal augmented Lagrangian subproblem by an accelerated composite gradient (ACG) method followed by a suitable Lagrange multiplier update. It is shown that … Read more