Randomized Roundings for a Mixed-Integer Elliptic Control System

We present randomized reconstruction approaches for optimal solutions to mixed-integer elliptic PDE control systems. Approximation properties and relations to sum-up rounding are derived using the cut norm. This enables us to dispose of space-filling curves required for sum-up rounding. Rates of almost sure convergence in the cut norm and the SUR norm in control space … Read more

Routing a fleet of unmanned aerial vehicles: a trajectory optimisation-based framework

We consider an aerial survey operation in which a fleet of unmanned aerial vehicles (UAVs) is required to visit several locations and then land in one of the available landing sites while optimising some performance criteria, subject to operational constraints and flight dynamics. We aim to minimise the maximum flight time of the UAVs. To … Read more

Near-optimal closed-loop method via Lyapunov damping for convex optimization

We introduce an autonomous system with closed-loop damping for first-order convex optimization. While, to this day, optimal rates of convergence are only achieved by non-autonomous methods via open-loop damping (e.g., Nesterov’s algorithm), we show that our system is the first one featuring a closed-loop damping while exhibiting a rate arbitrarily close to the optimal one. … Read more

A PDE-Constrained Generalized Nash Equilibrium Approach for Modeling Gas Markets with Transport

We investigate a class of generalized Nash equilibrium problems (GNEPs) in which the objectives of the individuals are interdependent and the shared constraint consists of a system of partial differential equations. This setup is motivated by the modeling of strategic interactions of competing firms, which explicitly take into account the dynamics of transporting a commodity, … Read more

Gas Transport Network Optimization: PDE-Constrained Models

The optimal control of gas transport networks was and still is a very important topic for modern economies and societies. Accordingly, a lot of research has been carried out on this topic during the last years and decades. Besides mixed-integer aspects in gas transport network optimization, one of the main challenges is that a physically … Read more

Second-order Partial Outer Convexification for Switched Dynamical Systems

Mixed-integer optimal control problems arise in many practical applications combining nonlinear, dynamic, and combinatorial features. To cope with the resulting complexity, several approaches have been suggested in the past. Some of them rely on solving a reformulated and relaxed control problem, referred to as partial outer convexification. Inspired by an efficient algorithm for switching time … Read more

Asymptotic Consistency for Nonconvex Risk-Averse Stochastic Optimization with Infinite Dimensional Decision Spaces

Optimal values and solutions of empirical approximations of stochastic optimization problems can be viewed as statistical estimators of their true values. From this perspective, it is important to understand the asymptotic behavior of these estimators as the sample size goes to infinity, which is both of theoretical as well as practical interest. This area of … Read more

An implicit function formulation for optimization of discretized index-1 differential algebraic systems

A formulation for the optimization of index-1 differential algebraic equation systems (DAEs) that uses implicit functions to remove algebraic variables and equations from the optimization problem is described. The formulation uses the implicit function theorem to calculate derivatives of functions that remain in the optimization problem in terms of a reduced space of variables, allowing … Read more

A Gauss-Newton-based Decomposition Algorithm for Nonlinear Mixed-Integer Optimal Control Problems

For the fast approximate solution of Mixed-Integer Non-Linear Programs (MINLPs) arising in the context of Mixed-Integer Optimal Control Problems (MIOCPs) a decomposition algorithm exists that solves a sequence of three comparatively less hard subproblems to determine an approximate MINLP solution. In this work, we propose a problem formulation for the second algorithm stage that is … Read more

Adaptive Nonlinear Optimization of District Heating Networks Based on Model and Discretization Catalogs

We propose an adaptive optimization algorithm for operating district heating networks in a stationary regime. The behavior of hot water flow in the pipe network is modeled using the incompressible Euler equations and a suitably chosen energy equation. By applying different simplifications to these equations, we derive a catalog of models. Our algorithm is based … Read more