Semidefinite Approximations for Global Unconstrained Polynomial Optimization

We consider here the problem of minimizing a polynomial function on $\oR^n$. The problem is known to be hard even for degree $4$. Therefore approximation algorithms are of interest. Lasserre \cite{lasserre:2001} and Parrilo \cite{Pa02a} have proposed approximating the minimum of the original problem using a hierarchy of lower bounds obtained via semidefinite programming relaxations. We … Read more

A filter-trust-region method for unconstrained optimization

A new filter-trust-region algorithm for solving unconstrained nonlinear optimization problems is introduced. Based on the filter technique introduced by Fletcher and Leyffer, it extends an existing technique of Gould, Leyffer and Toint (SIAM J. Optim., to appear 2004) for nonlinear equations and nonlinear least-squares to the fully general unconstrained optimization problem. The new algorithm is … Read more

Optimal Direct Determination of Sparse Jacobian Matrices

It is well known that a sparse Jacobian matrix can be determined with fewer function evaluations or automatic differentiation \emph{passes} than the number of independent variables of the underlying function. In this paper we show that by grouping together rows into blocks one can reduce this number further. We propose a graph coloring technique for … Read more

Intermediate Report on the development of an optimization code for smooth, high computing load, continuous objective functions when derivatives are not available

We find very often in the industry simulators of huge chemical reactors, simulators of huge turbo-compressors, simulators of the path of a satellite in low orbit around earth, … These simulators were written to allow the design engineer to correctly estimate the consequences of the adjustment of one (or many) design variables (or parameters of … Read more

The continuous Newton-Raphson method can look ahead

This paper is about an intriguing property of the continuous Newton-Raphson method for the minimization of a continuous objective function f: if x is a point in the domain of attraction of a strict local minimizer x* then the flux line of the Newton-Raphson flow that starts in x approaches x* from a direction that … Read more

A Wide Interval for Efficient Self-Scaling Quasi-Newton Algorithms

This paper uses certain conditions for the global and superlinear convergence of the two-parameter self-scaling Broyden family of quasi-Newton algorithms for unconstraiend optimization to derive a wide interval for self-scaling updates. Numerical testing shows that such algorithms not only accelerate the convergence of the (unscaled) methods from the so-called convex class, but increase their chances … Read more

A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization

We introduce an algorithm to minimize a function of several variables with no convexity nor smoothness assumptions. The main peculiarity of our approach is the use of an the objective function model which is the difference of two piecewise affine convex functions. Bundling and trust region concepts are embedded into the algorithm. Convergence of the … Read more

New Variable Metric Methods for Unconstrained Minimization Covering the Large-Scale Case

A new family of numerically efficient variable metric or quasi-Newton methods for unconstrained minimization are given, which give simple possibility of adaptation for large-scale optimization. Global convergence of the methods can be established for convex sufficiently smooth functions. Some encouraging numerical experience is reported. Citation Report V876, Institute of Computer Science, AV CR, Pod Vodarenskou … Read more

The Trust Region Subproblem and Semidefinite Programming

The trust region subproblem (the minimization of a quadratic objective subject to one quadratic constraint and denoted TRS) has many applications in diverse areas, e.g. function minimization, sequential quadratic programming, regularization, ridge regression, and discrete optimization. In particular, it determines the step in trust region algorithms for function minimization. Trust region algorithms are popular for … Read more

Minimizing nonconvex nonsmooth functions via cutting planes and proximity control

We describe an extension of the classical cutting plane algorithm to tackle the unconstrained minimization of a nonconvex, not necessarily differentiable function of several variables. The method is based on the construction of both a lower and an upper polyhedral approximation to the objective function and it is related to the use of the concept … Read more