Globally Optimized Finite Packings of Arbitrary Size Spheres in R^d

This work discusses the following general packing problem-class: given a finite collection of d-dimensional spheres with arbitrarily chosen radii, find the smallest sphere in R^d that contains the entire collection of these spheres in a non-overlapping arrangement. Generally speaking, analytical solution approaches cannot be expected to apply to this general problem-type, except for very small … Read more

A BFGS-SQP Method for Nonsmooth, Nonconvex, Constrained Optimization and its Evaluation using Relative Minimization Profiles

We propose an algorithm for solving nonsmooth, nonconvex, constrained optimization problems as well as a new set of visualization tools for comparing the performance of optimization algorithms. Our algorithm is a sequential quadratic optimization method that employs Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton Hessian approximations and an exact penalty function whose parameter is controlled using a steering strategy. … Read more

Perprof-py: a Python package for performance profile of mathematical optimization software

A very important part of research in Mathematical Optimization field is to benchmark optimization packages because it is one of the ways to compare solvers. During benchmarking, one usually obtains a large amount of information, like CPU time, number of functions evaluations, number of iterations and much more. This information, if presented as tables, can … Read more

What Works Best When? A Systematic Evaluation of Heuristics for Max-Cut and QUBO

Though empirical testing is broadly used to evaluate heuristics, there are shortcomings with how it is often applied in practice. In a systematic review of Max-Cut and Quadratic Unconstrained Binary Optimization (QUBO) heuristics papers, we found only 4% publish source code, only 14% compare heuristics with identical termination criteria, and most experiments are performed with … Read more

A Multi-Layer Line Search Method to Improve the Initialization of Optimization Algorithms

We introduce a novel metaheuristic methodology to improve the initialization of a given deterministic or stochastic optimization algorithm. Our objective is to improve the performance of the considered algorithm, called core optimization algorithm, by reducing its number of cost function evaluations, by increasing its success rate and by boosting the precision of its results. In … Read more

On the Performance of SQP Methods for Nonlinear Optimization

This paper concerns some practical issues associated with the formulation of sequential quadratic programming (SQP) methods for large-scale nonlinear optimization. SQP methods find an approximate solution of a sequence of quadratic programming (QP) subproblems in which a quadratic model of the objective function is minimized subject to the linearized constraints. Extensive numerical results are given … Read more

How Difficult is Nonlinear Optimization? A Practical Solver Tuning Approach, with Illustrative Results

Nonlinear optimization (NLO) per definitionem covers a vast range of problems, from trivial to practically intractable. For this reason, it is impossible to offer “guaranteed” advice to NLO software users. This fact becomes especially obvious, when facing unusually hard and/or previously unexplored NLO challenges. In the present study we offer some related practical observations, propose … Read more

A several new mixed integer linear programming formulations for exploration of online social networks

The goal of this paper is to identify the most promising sets of closest assignment constraints from the literature, in order to improve mixed integer linear programming formulations for exploration of information flow within a social network. The direct comparison between proposed formulations is performed on standard single source capacitated facility location problem instances. Therefore, … Read more

CBLIB 2014: A benchmark library for conic mixed-integer and continuous optimization

The Conic Benchmark Library (CBLIB 2014) is a collection of more than a hundred conic optimization instances under a free and open license policy. It is the first extensive benchmark library for the advancing field of conic mixed-integer and continuous optimization, which is already supported by all major commercial solvers and spans a wide range … Read more

Applying oracles of on-demand accuracy in two-stage stochastic programming – a computational study

Traditionally, two variants of the L-shaped method based on Benders’ decomposition principle are used to solve two-stage stochastic programming problems: the single-cut and the multi-cut version. The concept of an oracle with on-demand accuracy was originally proposed in the context of bundle methods for unconstrained convex optimzation to provide approximate function data and subgradients. In … Read more