High-Level Interfaces for the Multiple Shooting Code for Optimal Control MUSCOD

The demand for model-based simulation and optimization solutions requires the availability of software frameworks that not only provide computational capabilities, but also help to ease the formulation and implementation of the respective optimal control problems. In this article, we present and discuss recent development efforts and applicable work flows using the example of MUSCOD, the … Read more

Shaping and Trimming Branch-and-bound Trees

We present a new branch-and-bound type search method for mixed integer linear optimization problems based on the concept of offshoots (introduced in this paper). While similar to a classic branch-and-bound method, it allows for changing the order of the variables in a dive (shaping) and removing unnecessary branching variables from a dive (trimming). The regular … Read more

An Abstract Model for Branching and its Application to Mixed Integer Programming

The selection of branching variables is a key component of branch-and-bound algorithms for solving Mixed-Integer Programming (MIP) problems since the quality of the selection procedure is likely to have a significant effect on the size of the enumeration tree. State-of-the-art procedures base the selection of variables on their “LP gains”, which is the dual bound … Read more

A search for quantum coin-flipping protocols using optimization techniques

Coin-flipping is a cryptographic task in which two physically separated, mistrustful parties wish to generate a fair coin-flip by communicating with each other. Chailloux and Kerenidis (2009) designed quantum protocols that guarantee coin-flips with near optimal bias away from uniform, even when one party deviates arbitrarily from the protocol. The probability of any outcome in … Read more

Modeling with Metaconstraints and Semantic Typing of Variables

Recent research in hybrid optimization shows that a combination of technologies that exploits their complementary strengths can significantly speed up computation. The use of high-level metaconstraints in the problem formulation can achieve a substantial share of these computational gains by better communicating problem structure to the solver. During the solution process, however, metaconstraints give rise … Read more

Some notes on applying computational divided differencing in optimization

We consider the problem of accurate computation of the finite difference $f(\x+\s)-f(\x)$ when $\Vert\s\Vert$ is very small. Direct evaluation of this difference in floating point arithmetic succumbs to cancellation error and yields 0 when $\s$ is sufficiently small. Nonetheless, accurate computation of this finite difference is required by many optimization algorithms for a “sufficient decrease” … Read more

Computing in Operations Research using Julia

The state of numerical computing is currently characterized by a divide between highly efficient yet typically cumbersome low-level languages such as C, C++, and Fortran and highly expressive yet typically slow high-level languages such as Python and MATLAB. This paper explores how Julia, a modern programming language for numerical computing which claims to bridge this … Read more

On Defining Design Patterns to Generalize and Leverage Automated Constraint Solving

This position paper reflects on the generalization of adaptive methods for Constraint Programming (CP) solving mechanisms, and suggests the use of application-oriented descriptions as a means to broaden CP adoption in the industry. We regard as an adaptive method any procedure that modifies the behavior of the solving process according to previous experience gathered from … Read more

On Stable Piecewise Linearization and Generalized Algorithmic Differentiation

It is shown how functions that are defined by evaluation programs involving the absolute value function (besides smooth elementals), can be approximated locally by piecewise-linear models in the style of algorithmic, or automatic, differentiation (AD). The model can be generated by a minor modification of standard AD tools and it is Lipschitz continuous with respect … Read more

Do You Trust Derivatives or Differences?

We analyze the relationship between the noise level of a function and the accuracy and reliability of derivatives and difference estimates. We derive and empirically validate measures of quality for both derivatives and difference estimates. Using these measures, we quantify the accuracy of derivatives and differences in terms of the noise level of the function. … Read more