Reduction from the partition problem: Dynamic lot sizing problem with polynomial complexity

In this note, we reduce an instance of the partition problem to a dynamic lot sizing problem in polynomial time, and show that solving the latter problem solves the former problem. We further show that the instance of the partition problem can be solved using polynomial number of addition, multiplication and sort operations in input … Read more

Guaranteed bounds for optimal stopping problems using kernel-based non-asymptotic uniform confidence bands

In this paper, we introduce an approach for obtaining probabilistically guaranteed upper and lower bounds on the true optimal value of stopping problems. Bounds of existing simulation-and-regression approaches, such as those based on least squares Monte Carlo and information relaxation, are stochastic in nature and therefore do not come with a finite sample guarantee. Our … Read more

Column Elimination: An Iterative Approach to Solving Integer Programs

We present column elimination as a general framework for solving (large-scale) integer programming problems. In this framework, solutions are represented compactly as paths in a directed acyclic graph. Column elimination starts with a relaxed representation, that may contain infeasible paths, and solves a constrained network flow over the graph to find a solution. It then … Read more

An Introduction to Decision Diagrams for Optimization

This tutorial provides an introduction to the use of decision diagrams for solving discrete optimization problems. A decision diagram is a graphical representation of the solution space, representing decisions sequentially as paths from a root node to a target node. By merging isomorphic subgraphs (or equivalent subproblems), decision diagrams can compactly represent an exponential solution … Read more

Interdiction of minimum spanning trees and other matroid bases

In the minimum spanning tree (MST) interdiction problem, we are given a graph \(G=(V,E)\) with edge weights, and want to find some \(X\subseteq E\) satisfying a knapsack constraint such that the MST weight in \((V,E\setminus X)\) is maximized. Since MSTs of \(G\) are the minimum weight bases in the graphic matroid of \(G\), this problem … Read more

A Parametric Approach for Solving Convex Quadratic Optimization with Indicators Over Trees

This paper investigates convex quadratic optimization problems involving $n$ indicator variables, each associated with a continuous variable, particularly focusing on scenarios where the matrix $Q$ defining the quadratic term is positive definite and its sparsity pattern corresponds to the adjacency matrix of a tree graph. We introduce a graph-based dynamic programming algorithm that solves this … Read more

On the Out-of-Sample Performance of Stochastic Dynamic Programming and Model Predictive Control

Sample average approximation-based stochastic dynamic programming (SDP) and model predictive control (MPC) are two different methods for approaching multistage stochastic optimization. In this paper we investigate the conditions under which SDP may be outperformed by MPC. We show that, depending on the presence of concavity or convexity, MPC can be interpreted as solving a mean-constrained … Read more

Policy with guaranteed risk-adjusted performance for multistage stochastic linear problems

Risk-averse multi-stage problems and their applications are gaining interest in various fields of applications. Under convexity assumptions, the resolution of these problems can be done with trajectory following dynamic programming algorithms like Stochastic Dual Dynamic Programming (SDDP) to access a deterministic lower bound, and dual SDDP for deterministic upper bounds. In this paper, we leverage … Read more

A Hybrid Genetic Algorithm for Generalized Order Acceptance and Scheduling

In this paper, a novel approach is presented to address a challenging optimization problem known as Generalized Order Acceptance Scheduling. This problem involves scheduling a set of orders on a single machine with release dates, due dates, deadlines, and sequence-dependent setup times judiciously to maximize revenue. In view of resource constraints, not all orders can … Read more

From Optimization to Control: Quasi Policy Iteration

Recent control algorithms for Markov decision processes (MDPs) have been designed using an implicit analogy with well-established optimization algorithms. In this paper, we make this analogy explicit across four problem classes with a unified solution characterization. This novel framework, in turn, allows for a systematic transformation of algorithms from one domain to the other. In … Read more