An Online-Learning Approach to Inverse Optimization

In this paper, we demonstrate how to learn the objective function of a decision-maker while only observing the problem input data and the decision-maker’s corresponding decisions over multiple rounds. Our approach is based on online learning and works for linear objectives over arbitrary feasible sets for which we have a linear optimization oracle. As such, … Read more

Assessment of systemic vulnerabilities in container shipping networks with consideration of transhipment

The global container shipping network is vital to international trade. Current techniques for its vulnerability assessment are constrained due to the lack of historical disruption data and computational limitations due to typical network sizes. We address these modelling challenges by developing a new framework, composed by game-theoretic attacker-defender model and a cost-based container assignment model … Read more

Strictly and Γ-Robust Counterparts of Electricity Market Models: Perfect Competition and Nash-Cournot Equilibria

This paper mainly studies two topics: linear complementarity problems for modeling electricity market equilibria and optimization under uncertainty. We consider both perfectly competitive and Nash–Cournot models of electricity markets and study their robustifications using strict robustness and the Γ-approach. For three out of the four combinations of economic competition and robustification, we derive algorithmically tractable … Read more

The Standard Pessimistic Bilevel Problem

Pessimistic bilevel optimization problems, as optimistic ones, possess a structure involving three interrelated optimization problems. Moreover, their finite infima are only attained under strong conditions. We address these difficulties within a framework of moderate assumptions and a perturbation approach which allow us to approximate such finite infima arbitrarily well by minimal values of a sequence … Read more

Acyclic Mechanism Design for Freight Consolidation

Freight consolidation is a logistics practice that improves the cost-effectiveness and efficiency of transportation operations, and also reduces energy consumption and carbon footprint. A “fair” shipping cost sharing scheme is indispensable to help establish and sustain the cooperation of a group of suppliers in freight consolidation. In this paper, we design a truthful acyclic mechanism … Read more

Dynamic Risked Equilibrium

We revisit the correspondence of competitive partial equilibrium with a social optimum in markets where risk-averse agents solve multistage stochastic optimization problems formulated in scenario trees. The agents trade a commodity that is produced from an uncertain supply of resources which can be stored. The agents can also trade risk using Arrow-Debreu securities. In this … Read more

On stochastic auctions in risk-averse electricity markets with uncertain supply

This paper studies risk in a stochastic auction which facilitates the integration of renewable generation in electricity markets. We model market participants who are risk averse and reflect their risk aversion through coherent risk measures. We uncover a closed-form characterization of a risk-averse generator’s optimal pre-commitment behaviour for a given real-time policy, both with and … Read more

Optimality Conditions and Constraint Qualifications for Generalized Nash Equilibrium Problems and their Practical Implications

Generalized Nash Equilibrium Problems (GNEPs) are a generalization of the classic Nash Equilibrium Problems (NEPs), where each player’s strategy set depends on the choices of the other players. In this work we study constraint qualifications and optimality conditions tailored for GNEPs and we discuss their relations and implications for global convergence of algorithms. Surprisingly, differently … Read more

Variational inequality formulation for the games with random payoffs

We consider an n-player non-cooperative game with random payoffs and continuous strategy set for each player. The random payoffs of each player are defined using a finite dimensional random vector. We formulate this problem as a chance-constrained game by defining the payoff function of each player using a chance constraint. We first consider the case … Read more

Meta-Modeling to Assess the Possible Future of Paris Agreement

In the meta-modeling approach one builds a numerically tractable dynamic optimization or game model in which the parameters are identified through statistical emulation of a detailed large scale numerical simulation model. In this paper we show how this approach can be used to assess the economic impacts of possible climate policies compatible with the Paris … Read more