Local Search for Hop-constrained Directed Steiner Tree Problem with Application to UAV-based Multi-target Surveillance

We consider the directed Steiner tree problem (DSTP) with a constraint on the total number of arcs (hops) in the tree. This problem is known to be NP-hard, and therefore, only heuristics can be applied in the case of its large-scale instances. For the hop-constrained DSTP, we propose local search strategies aimed at improving any … Read more

Global Optimization via Slack Variables

This paper presents a method for finding global optima to constrained nonlinear programs via slack variables. The method only applies if all functions involved are of class C1 but without any further qualification on the types of constraints allowed; it proceeds by reformulating the given program into a bi-objective program that is then solved for … Read more

Cut Generation for Optimization Problems with Multivariate Risk Constraints

We consider a class of multicriteria stochastic optimization problems that features benchmarking constraints based on conditional value-at-risk and second-order stochastic dominance. We develop alternative mixed-integer programming formulations and solution methods for cut generation problems arising in optimization under such multivariate risk constraints. We give the complete linear description of two non-convex substructures appearing in these … Read more

Branch-and-bound for bi-objective integer programming

In Pareto bi-objective integer optimization the optimal result corresponds to a set of non- dominated solutions. We propose a generic bi-objective branch-and-bound algorithm that uses a problem-independent branching rule exploiting available integer solutions, and cutting plane generation taking advantage of integer objective values. The developed algorithm is applied to the bi-objective team orienteering problem with … Read more

On Global Optimization

This paper presents a relatively “unfettered” method for finding global optima to constrained nonlinear programs. The method reformulates the given program into a bi-objective mixed-integer program that is then solved for the Nash equilibrium. A numerical example (whose solution provides a new benchmark against which other algorithms may be assessed) is included to illustrate the … Read more

A dynamic gradient approach to Pareto optimization with nonsmooth nonconvex objective functions

In a general Hilbert framework, we consider continuous gradient-like dynamical systems for constrained multiobjective optimization involving non-smooth convex objective functions. Our approach is in the line of a previous work where was considered the case of convex di erentiable objective functions. Based on the Yosida regularization of the subdi erential operators involved in the system, we obtain … Read more

On the effects of combining objectives in multi-objective optimization

In multi-objective optimization, one considers optimization problems with more than one objective function, and in general these objectives conflict each other. As the solution set of a multiobjective problem is often rather large and contains points of no interest to the decision-maker, strategies are sought that reduce the size of the solution set. One such … Read more

Minimal Points, Variational Principles, and Variable Preferences in Set Optimization

The paper is devoted to variational analysis of set-valued mappings acting from quasimetric spaces into topological spaces with variable ordering structures. Besides the mathematical novelty, our motivation comes from applications to adaptive dynamical models of behavioral sciences. We develop a unified dynamical approach to variational principles in such settings based on the new minimal point … Read more

Approximating Pareto Curves using Semidefinite Relaxations

We consider the problem of constructing an approximation of the Pareto curve associated with the multiobjective optimization problem $\min_{x \in S} \{(f_1(x),f_2(x))\}$, where $f_1$ and $f_2$ are two conflicting positive polynomial criteria and $S \subset R^n$ is a compact basic semialgebraic set. We provide a systematic numerical scheme to approximate the Pareto curve. We start … Read more

Surrogate upper bound sets for bi-objective bi-dimensional binary knapsack problems

The paper deals with the definition and the computation of surrogate upper bound sets for the bi-objective bi-dimensional binary knapsack problem. It introduces the Optimal Convex Surrogate Upper Bound set, which is the tightest possible definition based on the convex relaxation of the surrogate relaxation. Two exact algorithms are proposed: an enumerative algorithm and its … Read more