Line-Prioritized Environmental Selection and Normalization Scheme for Many-Objective Optimization using Reference-Line-based Framework

The Pareto-dominance-basedmulti-objective evolutionary algorithms (MOEAs) have been successful in solving many test problems and other engineering optimization problems. However, their performance gets affected when solving more than 3-objective optimization problems due to lack of sufficient selection pressure. Many attempts have been made by the researchers toward improving the environmental selection of those MOEAs. One such … Read more

Distributionally Robust Partially Observable Markov Decision Process with Moment-based Ambiguity

We consider a distributionally robust Partially Observable Markov Decision Process (DR-POMDP), where the distribution of the transition-observation probabilities is unknown at the beginning of each decision period, but their realizations can be inferred using side information at the end of each period after an action being taken. We build an ambiguity set of the joint … Read more

Assessment of Climate Agreements over the Long Term with Strategic Carbon Dioxyde Removal Activity

In this paper we extend a game theoretic meta-model used to assess the future of Paris agreement to the time horizon 2100 and we include in the strategic decisions of the negotiating coalitions the use of Carbon Dioxyde Removal (CDR) technologies. The meta-game model is calibrated through statistical emulation of GEMINI-E3, a world computable general … Read more

Solving Multiobjective Mixed Integer Convex Optimization Problems

Multiobjective mixed integer convex optimization refers to mathematical programming problems where more than one convex objective function needs to be optimized simultaneously and some of the variables are constrained to take integer values. We present a branch-and-bound method based on the use of properly defined lower bounds. We do not simply rely on convex relaxations, … Read more

Risk-Sensitive Variational Bayes: Formulations and Bounds

We study data-driven decision-making problems in a parametrized Bayesian framework. We adopt a risk-sensitive approach to modeling the interplay between statistical estimation of parameters and optimization, by computing a risk measure over a loss/disutility function with respect to the posterior distribution over the parameters. While this forms the standard Bayesian decision-theoretic approach, we focus on … Read more

Pricing for Delivery Time Flexibility

We study a variant of the multi-period vehicle routing problem, in which a service provider offers a discount to customer in exchange for delivery flexibility. We establish theoretical properties and empirical insights regarding the intricate and complex relation between the benefit from additional delivery flexibility, the discounts offered to customers to gain additional delivery flexibility, … Read more

Stochastic Lipschitz Dynamic Programming

We propose a new algorithm for solving multistage stochastic mixed integer linear programming (MILP) problems with complete continuous recourse. In a similar way to cutting plane methods, we construct nonlinear Lipschitz cuts to build lower approximations for the non-convex cost to go functions. An example of such a class of cuts are those derived using … Read more

Distributionally robust optimization with multiple time scales: valuation of a thermal power plant

The valuation of a real option is preferably done with the inclusion of uncertainties in the model, since the value depends on future costs and revenues, which are not perfectly known today. The usual value of the option is defined as the maximal expected (discounted) profit one may achieve under optimal management of the operation. … Read more

Exact Multiple Sequence Alignment by Synchronized Decision Diagrams

This paper develops an exact solution algorithm for the Multiple Sequence Alignment (MSA) problem. In the first step, we design a dynamic programming model and use it to construct a novel Multi-valued Decision Diagrams (MDD) representation of all pairwise sequence alignments (PSA). PSA MDDs are then synchronized using side constraints to model the MSA problem … Read more

Planning for Dynamics under Uncertainty

Planning under uncertainty is a frequently encountered problem. Noisy observation is a typical situation that introduces uncertainty. Such a problem can be formulated as a Partially Observable Markov Decision Process (POMDP). However, solving a POMDP is nontrivial and can be computationally expensive in continuous state, action, observation and latent state space. Through this work, we … Read more