Approximations for Pareto and Proper Pareto solutions and their KKT conditions

There has been numerous amount of studies on proper Pareto points in multiobjective optimization theory. Geoffrion proper points are one of the most prevalent form of proper optimality. Due to some convergence issues a restricted version of these proper points, Geoffrion proper points with preset bounds has been introduced recently. Since solution of any algorithm … Read more

Nonmonotone line searches for unconstrained multiobjective optimization problems

In the last two decades, many descent methods for multiobjective optimization problems were proposed. In particular, the steepest descent and the Newton methods were studied for the unconstrained case. In both methods, the search directions are computed by solving convex subproblems, and the stepsizes are obtained by an Armijo-type line search. As a consequence, the … Read more

Risk averse stochastic programming: time consistency and optimal stopping

Bellman formulated a vague principle for optimization over time, which characterizes optimal policies by stating that a decision maker should not regret previous decisions retrospectively. This paper addresses time consistency in stochastic optimization. The problem is stated in generality first. The paper discusses time consistent decision-making by addressing risk measures which are recursive, nested, dynamically … Read more

Improved Decision Rule Approximations for Multi-Stage Robust Optimization via Copositive Programming

We study decision rule approximations for generic multi-stage robust linear optimization problems. We consider linear decision rules for the case when the objective coefficients, the recourse matrices, and the right-hand sides are uncertain, and consider quadratic decision rules for the case when only the right-hand sides are uncertain. The resulting optimization problems are NP-hard but … Read more

Numerical Results for the Multi-objective Trust Region Algorithm MHT

A set of 78 test examples is presented for the trust region method MHT described in J. Thomann, G. Eichfelder, A trust region algorithm for heterogeneous multi-objective optimization, 2018 (available as preprint: http://optimization-online.org/DB_HTML/2018/03/6495.html) . It is designed for multi-objective heterogeneous optimization problems where one of the objective functions is an expensive black-box function, for example … Read more

Multi-objective Ranking and Selection: Optimal Sampling Laws and Tractable Approximations via SCORE

Consider the multi-objective ranking and selection (MORS) problem in which we select the Pareto-optimal set from a finite set of systems evaluated on three or more stochastic objectives. Solving this problem is difficult because we must determine how to allocate a simulation budget among the systems to minimize the probability that any systems are misclassified. … Read more

A Wolfe line search algorithm for vector optimization

In a recent paper, Lucambio Pérez and Prudente extended the Wolfe conditions for the vector-valued optimization. Here, we propose a line search algorithm for finding a step-size satisfying the strong Wolfe conditions in the vector optimization setting. Well definiteness and finite termination results are provided. We discuss practical aspects related to the algorithm and present … Read more

Branching with Hyperplanes in the Criterion Space: the Frontier Partitioner Algorithm for Biobjective Integer Programming

We present an algorithm for finding the complete Pareto frontier of biobjective integer programming problems. The method is based on the solution of a finite number of integer programs. The feasible sets of the integer programs are built from the original feasible set, by adding cuts that separate efficient solutions. Providing the existence of an … Read more

A new concept of slope for set-valued maps and applications in set optimization studied with Kuroiwa’s set approach

In this paper, scalarizing functions defined with the help of the Hiriart-Urruty signed distance are used to characterize set order relations and weak optimal solutions in set optimization studied with Kuroiwa’s set approach and to introduce a new concept of slope for a set-valued map. It turns out that this slope possesses most properties of … Read more

Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models

Critical infrastructure systems in cities are becoming increasingly interdependent, therefore exacerbating the impacts of disruptive events through cascading failures, hindered asset repairs and network congestion. Current resilience assessment methods fall short of fully capturing such interdependency effects as they tend to model asset reliability and network flows separately and often rely on static flow assignment … Read more