Dual Dynamic Programming with cut selection: convergence proof and numerical experiments

We consider convex optimization problems formulated using dynamic programming equations. Such problems can be solved using the Dual Dynamic Programming algorithm combined with the Level 1 cut selection strategy or the Territory algorithm to select the most relevant Benders cuts. We propose a limited memory variant of Level 1 and show the convergence of DDP … Read more

Lower Bound On the Computational Complexity of Discounted Markov Decision Problems

We study the computational complexity of the infinite-horizon discounted-reward Markov Decision Problem (MDP) with a finite state space $\cS$ and a finite action space $\cA$. We show that any randomized algorithm needs a running time at least $\Omega(\carS^2\carA)$ to compute an $\epsilon$-optimal policy with high probability. We consider two variants of the MDP where the … Read more

Airport Capacity Extension, Fleet Investment, and Optimal Aircraft Scheduling in a Multi-Level Market Model: On the Effects of Market Regulations

In this paper we present a four-level market model that accounts for airport capacity extension, fleet investment, aircraft scheduling, and ticket trade in a liberalized aviation market with independent decision makers. In particular, budget-constrained airports decide on the first level on their optimal runway capacity extension and on a corresponding airport charge. Airports anticipate optimal … Read more

Optimal threshold classification characteristics

This study looks at the application of mathematical concepts of entropy and Fibonacci sequence in creating optimal dimensional relations of classification character. The paper is devoted to optimization of some numerical relations and integers as unified threshold characteristics of classification type, aimed for example at systemic optimizing the measuring information of various processes. The paper … Read more

A Hausdorff-type distance, a directional derivative of a set-valued map and applications in set optimization

In this paper, we follow Kuroiwa’s set approach in set optimization, which proposes to compare values of a set-valued objective map $F$ respect to various set order relations. We introduce a Hausdorff-type distance relative to an ordering cone between two sets in a Banach space and use it to define a directional derivative for $F$. … Read more

Bilevel optimization with a multiobjective problem in the lower level

Bilevel problems model instances with a hierarchical structure. Aiming at an efficient solution of a constrained multiobjective problem according with some pre-defined criterion, we reformulate this optimization but non standard problem as a classic bilevel one. This reformulation intents to encompass all the objectives, so that the properly efficient solution set is recovered by means … Read more

Randomized Linear Programming Solves the Discounted Markov Decision Problem In Nearly-Linear (Sometimes Sublinear) Running Time

We propose a randomized linear programming algorithm for approximating the optimal policy of the discounted Markov decision problem. By leveraging the value-policy duality, the algorithm adaptively samples state transitions and makes exponentiated primal-dual updates. We show that it finds an ε-optimal policy using nearly-linear running time in the worst case. For Markov decision processes that … Read more

On generalized-convex constrained multi-objective optimization

In this paper, we consider multi-objective optimization problems involving not necessarily convex constraints and componentwise generalized-convex (e.g., semi-strictly quasi-convex, quasi-convex, or explicitly quasi-convex) vector-valued objective functions that are acting between a real linear topological pre-image space and a finite dimensional image space. For these multi-objective optimization problems, we show that the set of (strictly, weakly) … Read more

A hybrid approach for Bi-Objective Optimization

A large number of the real world planning problems which are today solved using Operations Research methods are actually multi-objective planning problems, but most of them are solved using single-objective methods. The reason for converting, i.e. simplifying, multi- objective problems to single-objective problems is that no standard multi-objective solvers exist and specialized algorithms need to … Read more