Regularized Stochastic Dual Dynamic Programming for convex nonlinear optimization problems

We define a regularized variant of the Dual Dynamic Programming algorithm called REDDP (REgularized Dual Dynamic Programming) to solve nonlinear dynamic programming equations. We extend the algorithm to solve nonlinear stochastic dynamic programming equations. The corresponding algorithm, called SDDP-REG, can be seen as an extension of a regularization of the Stochastic Dual Dynamic Programming (SDDP) … Read more

Understanding Deep Neural Networks with Rectified Linear Units

In this paper we investigate the family of functions representable by deep neural networks (DNN) with rectified linear units (ReLU). We give the first-ever polynomial time (in the size of data) algorithm to train a ReLU DNN with one hidden layer to {\em global optimality}. This follows from our complete characterization of the ReLU DNN … Read more

Second-order cone programming formulation for two player zero-sum game with chance constraints

We consider a two player finite strategic zero-sum game where each player has stochastic linear constraints. We formulate the stochastic constraints of each player as chance constraints. We show the existence of a saddle point equilibrium if the row vectors of the random matrices, defining the stochastic constraints of each player, are elliptically symmetric distributed … Read more

Bridging the gap between predictive and prescriptive analytics – new optimization methodology needed

Business analytics is becoming more and more important nowadays. Up to now predictive analytics appears to be much more applied in practice than prescriptive analytics. We argue that although optimization is used to obtain predictive models, and predictive tools are used to forecast parameters in optimization models, still the deep relation between the predictive and … Read more

Stochastic Primal-Dual Methods and Sample Complexity of Reinforcement Learning

We study the online estimation of the optimal policy of a Markov decision process (MDP). We propose a class of Stochastic Primal-Dual (SPD) methods which exploit the inherent minimax duality of Bellman equations. The SPD methods update a few coordinates of the value and policy estimates as a new state transition is observed. These methods … Read more

On the Existence of Pareto Solutions for Polynomial Vector Optimization Problems

We are interested in the existence of Pareto solutions to the vector optimization problem $$\text{\rm Min}_{\,\mathbb{R}^m_+} \{f(x) \,|\, x\in \mathbb{R}^n\},$$ where $f\colon\mathbb{R}^n\to \mathbb{R}^m$ is a polynomial map. By using the {\em tangency variety} of $f$ we first construct a semi-algebraic set of dimension at most $m – 1$ containing the set of Pareto values of … Read more

Fully Polynomial Time (Sigma,Pi)-Approximation Schemes for Continuous Nonlinear Newsvendor and Continuous Stochastic Dynamic Programs

We study the continuous newsvendor problem (i.e. a newsvendor problem concerning goods of a non-discrete nature, such as fresh fruit juice) and a class of stochastic dynamic programs with several application areas, such as inventory control of a continuous good, economics, and supply chain management. The class is characterized by continuous state and action spaces, … Read more

Relaxation Analysis for the Dynamic Knapsack Problem with Stochastic Item Sizes

We consider a version of the knapsack problem in which an item size is random and revealed only when the decision maker attempts to insert it. After every successful insertion the decision maker can dynamically choose the next item based on the remaining capacity and available items, while an unsuccessful insertion terminates the process. We … Read more

Branch-and-bound for biobjective mixed-integer linear programming

We present a generic branch-and-bound algorithm for finding all the Pareto solutions of a biobjective mixed-integer linear program. The main contributions are new algorithms for obtaining dual bounds at a node, checking node fathoming, presolve, and duality gap measurement. Our branch-and-bound is predominantly a decision space search method because the branching is performed on the … Read more

A parametric programming approach to redefine the global configuration of resource constraints of 0-1-Integer Linear Programming problems.

A mathematical programming approach to deal with the global configuration of resource constraints is presented. A specialized parametric programming algorithm to obtain the pareto set for the biobjective problem that appears to deal with the global configuration for 0-1-Integer Linear Programing problems is presented and implemented. Computational results for Multiconstrained Knapsack problems and Bounded Knapsack … Read more