A close look at auxiliary problem principles for equilibria

The auxiliary problem principle allows solving a given equilibrium problem (EP) through an equivalent auxiliary problem with better properties. The paper investigates two families of auxiliary EPs: the classical auxiliary problems, in which a regularizing term is added to the equilibrium bifunction, and the regularized Minty EPs. The conditions that ensure the equivalence of a … Read more

Sample approximations of multiobjective stochastic optimization problems

The article describes approximation technique for solving multiobjective stochastic optimization problems. As a generalized model of a stochastic system to be optimized a vector “input — random output” system is used. Random outputs are converted into a vector of deterministic performance/risk indicators. The problem is to find those inputs that correspond to Pareto-optimal values of … Read more

Parameter-free Sampled Fictitious Play for Solving Deterministic Dynamic Programming Problems

To facilitate fast solution of deterministic dynamic programming problems, we present a parameter-free variation of the Sampled Fictitious Play (SFP) algorithm. Its random tie-braking procedure imparts a natural randomness to the algorithm which prevents it from “getting stuck” at a local optimal solution and allows the discovery of an optimal path in a finite number … Read more

Simplex Algorithm for Countable-state Discounted Markov Decision Processes

We consider discounted Markov Decision Processes (MDPs) with countably-infinite state spaces, finite action spaces, and unbounded rewards. Typical examples of such MDPs are inventory management and queueing control problems in which there is no specific limit on the size of inventory or queue. Existing solution methods obtain a sequence of policies that converges to optimality … Read more

Process-Based Risk Measures for Observable and Partially Observable Discrete-Time Controlled Systems

For controlled discrete-time stochastic processes we introduce a new class of dynamic risk measures, which we call process-based. Their main features are that they measure risk of processes that are functions of the history of the base process. We introduce a new concept of conditional stochastic time consistency and we derive the structure of process-based … Read more

A new bottom-up search method for determining all maximal efficient faces in multiple objective linear programming

Bottom-up search methods for determining the efficient set of a multiple objective linear programming (MOLP) problem have a valuable advantage that they can quickly give efficient subsets of the MOLP problem to the decision makers. Main difficulties of the previously appeared bottom-up search methods are finding all efficient extreme points adjacent to and enumerating all … Read more

The global weak sharp minima with explicit exponents in polynomial vector optimization problems

In this paper we discuss the global weak sharp minima property for vector optimization problems with polynomial data. Exploiting the imposed polynomial structure together with tools of variational analysis and a quantitative version of \L ojasiewicz’s gradient inequality due to D’Acunto and Kurdyka, we establish the H\”older type global weak sharp minima with explicitly calculated … Read more

Information Relaxation Bounds for Infinite Horizon Markov Decision Processes

We consider the information relaxation approach for calculating performance bounds for stochastic dynamic programs (DPs), following Brown, Smith, and Sun (2010). This approach generates performance bounds by solving problems with relaxed nonanticipativity constraints and a penalty that punishes violations of these constraints. In this paper, we study infinite horizon DPs with discounted costs and consider … Read more

Local Search for Hop-constrained Directed Steiner Tree Problem with Application to UAV-based Multi-target Surveillance

We consider the directed Steiner tree problem (DSTP) with a constraint on the total number of arcs (hops) in the tree. This problem is known to be NP-hard, and therefore, only heuristics can be applied in the case of its large-scale instances. For the hop-constrained DSTP, we propose local search strategies aimed at improving any … Read more

E. Lieb convexity inequalities and noncommutative Bernstein inequality in Jordan-algebraic setting

We describe a Jordan-algebraic version of E. Lieb convexity inequalities. A joint convexity of Jordan-algebraic version of quantum entropy is proven. SA spectral theory on semi-simple complex Jordan algebras is used as atool to prove the convexity results. Possible applications to optimization and statistics are indicated CitationPreprint, University of Notre Dame, August 2014ArticleDownload View PDF