Optimality conditions for various efficient solutions involving coderivatives: from set-valued optimization problems to set-valued equilibrium problems

We present a new approach to the study of a set-valued equilibrium problem (for short, SEP) through the study of a set-valued optimization problem with a geometric constraint (for short, SOP) based on an equivalence between solutions of these problems. As illustrations, we adapt to SEP enhanced notions of relative Pareto efficient solutions introduced in … Read more

Optimality Conditions and Duality for Nonsmooth Multiobjective Optimization Problems with Cone Constraints and Applications

In this work, a nonsmooth multiobjective optimization problem involving generalized invexity with cone constraints and Applications (for short, (MOP)) is considered. The Kuhn-Tucker necessary and sufficient conditions for (MOP) are established by using a generalized alternative theorem of Craven and Yang. The relationship between weakly efficient solutions of (MOP) and vector valued saddle points of … Read more

Approximating the Least Core Value and Least Core of Cooperative Games with Supermodular Costs

We study the approximation of the least core value and the least core of supermodular cost cooperative games. We provide a framework for approximation based on oracles that approximately determine maximally violated constraints. This framework yields a (3 + \epsilon)-approximation algorithm for computing the least core value of supermodular cost cooperative games, and a polynomial-time … Read more

On the Equivalencey of Linear Programming Problems and Zero-Sum Games

In 1951, Dantzig showed the equivalence of linear programming and two-person zero-sum games. However, in the description of his reduction from linear programming to zero-sum games, he noted that there was one case in which his reduction does not work. This also led to incomplete proofs of the relationship between the Minmax Theorem of game … Read more

Direct Multisearch for Multiobjective Optimization

In practical applications of optimization it is common to have several conflicting objective functions to optimize. Frequently, these functions are subject to noise or can be of black-box type, preventing the use of derivative-based techniques. We propose a novel multiobjective derivative-free methodology, calling it direct multisearch (DMS), which does not aggregate any of the objective … Read more

Fast population game dynamics for dominant sets and other quadratic optimization problems

We propose a fast population game dynamics, motivated by the analogy with infection and immunization processes within a population of “players,” for finding dominant sets, a powerful graph-theoretical notion of a cluster. Each step of the proposed dynamics is shown to have a linear time/space complexity and we show that, under the assumption of symmetric … Read more

Aircraft landing problems with aircraft classes

This paper focuses on the aircraft landing problem that is to assign landing times to aircraft approaching the airport under consideration. Each aircraft’s landing time must be in a time interval encompassing a target landing time. If the actual landing time deviates from the target landing time additional costs occur which depend on the amount … Read more

Flows and Decompositions of Games: Harmonic and Potential Games

In this paper we introduce a novel flow representation for finite games in strategic form. This representation allows us to develop a canonical direct sum decomposition of an arbitrary game into three components, which we refer to as the potential, harmonic and nonstrategic components. We analyze natural classes of games that are induced by this … Read more

Robust Markov Decision Processes

Markov decision processes (MDPs) are powerful tools for decision making in uncertain dynamic environments. However, the solutions of MDPs are of limited practical use due to their sensitivity to distributional model parameters, which are typically unknown and have to be estimated by the decision maker. To counter the detrimental effects of estimation errors, we consider … Read more

Risk Adjusted Budget Allocation Models with Application in Homeland Security

This paper presents and studies several models for multi-criterion budget allocation problems under uncertainty. We start by introducing a robust weighted objective model, which is developed further using the concept of stochastic dominance to incorporate risk averseness of the decision maker. A budget minimization variant of this model is also presented. We use a Sample … Read more