Uniform bound on the 1-norm of the inverse of lower triangular Toeplitz matrices

The uniform bound of 1-norm is given for the inverse of lower triangular Toeplitz matrices with nonnegative monotonic decreasing entries whose limit is zero. The new bound is the sharpest under the given constraints. This result is then employed to resolve a long standing open problem posed by Brunner concerning the convergence of the one-point … Read more

Computational and Economic Limitations of Dispatch Operations in the Next-Generation Power Grid

We study the interactions between computational and economic performance of dispatch operations under highly dynamic environments. In particular, we discuss the need for extending the forecast horizon of the dispatch formulation in order to anticipate steep variations of renewable power and highly elastic loads. We present computational strategies to solve the increasingly larger optimization problems … Read more

Two stage stochastic equilibrium problems with equilibrium constraints: modeling and numerical schemes

This paper presents a two stage stochastic equilibrium problem with equilibrium constraints(SEPEC) model. Some source problems which motivate the model are discussed. Monte Carlo sampling method is applied to solve the SEPEC. The convergence analysis on the statistical estimators of Nash equilibria and Nash stationary points are presented. ArticleDownload View PDF

Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds

We consider the problem of dynamic portfolio optimization in a discrete-time, finite-horizon setting. Our general model considers risk aversion, portfolio constraints (e.g., no short positions), return predictability, and transaction costs. This problem is naturally formulated as a stochastic dynamic program. Unfortunately, with non-zero transaction costs, the dimension of the state space is at least as … Read more

Optimality conditions for various efficient solutions involving coderivatives: from set-valued optimization problems to set-valued equilibrium problems

We present a new approach to the study of a set-valued equilibrium problem (for short, SEP) through the study of a set-valued optimization problem with a geometric constraint (for short, SOP) based on an equivalence between solutions of these problems. As illustrations, we adapt to SEP enhanced notions of relative Pareto efficient solutions introduced in … Read more

Optimality Conditions and Duality for Nonsmooth Multiobjective Optimization Problems with Cone Constraints and Applications

In this work, a nonsmooth multiobjective optimization problem involving generalized invexity with cone constraints and Applications (for short, (MOP)) is considered. The Kuhn-Tucker necessary and sufficient conditions for (MOP) are established by using a generalized alternative theorem of Craven and Yang. The relationship between weakly efficient solutions of (MOP) and vector valued saddle points of … Read more

Approximating the Least Core Value and Least Core of Cooperative Games with Supermodular Costs

We study the approximation of the least core value and the least core of supermodular cost cooperative games. We provide a framework for approximation based on oracles that approximately determine maximally violated constraints. This framework yields a (3 + \epsilon)-approximation algorithm for computing the least core value of supermodular cost cooperative games, and a polynomial-time … Read more

On the Equivalencey of Linear Programming Problems and Zero-Sum Games

In 1951, Dantzig showed the equivalence of linear programming and two-person zero-sum games. However, in the description of his reduction from linear programming to zero-sum games, he noted that there was one case in which his reduction does not work. This also led to incomplete proofs of the relationship between the Minmax Theorem of game … Read more

Direct Multisearch for Multiobjective Optimization

In practical applications of optimization it is common to have several conflicting objective functions to optimize. Frequently, these functions are subject to noise or can be of black-box type, preventing the use of derivative-based techniques. We propose a novel multiobjective derivative-free methodology, calling it direct multisearch (DMS), which does not aggregate any of the objective … Read more

Fast population game dynamics for dominant sets and other quadratic optimization problems

We propose a fast population game dynamics, motivated by the analogy with infection and immunization processes within a population of “players,” for finding dominant sets, a powerful graph-theoretical notion of a cluster. Each step of the proposed dynamics is shown to have a linear time/space complexity and we show that, under the assumption of symmetric … Read more