A Note on Multiobjective Optimization and Complementarity Constraints

We propose a new approach to convex nonlinear multiobjective optimization that captures the geometry of the Pareto set by generating a discrete set of Pareto points optimally. We show that the problem of finding an optimal representation of the Pareto surface can be formulated as a mathematical program with complementarity constraints. The complementarity constraints arise … Read more

Temporal difference learning with kernels for pricing american-style options

We propose in this paper to study the problem of estimating the cost-to-go function for an infinite-horizon discounted Markov chain with possibly continuous state space. For implementation purposes, the state space is typically discretized. As soon as the dimension of the state space becomes large, the computation is no more practicable, a phenomenon referred to … Read more

Optimal Information Monitoring Under a Politeness Constraint

We describe scheduling algorithms for monitoring an information source whose contents change at times modeled by a nonhomogeneous Poisson process. In a given time period of length T, we enforce a politeness constraint that we may only probe the source at most n times. This constraint, along with an optional constraint that no two probes … Read more

Transposition theorems and qualification-free optimality conditions

New theorems of the alternative for polynomial constraints (based on the Positivstellensatz from real algebraic geometry) and for linear constraints (generalizing the transposition theorems of Motzkin and Tucker) are proved. Based on these, two Karush-John optimality conditions — holding without any constraint qualification — are proved for single- or multi-objective constrained optimization problems. The first … Read more

New hybrid optimization algorithms for machine scheduling problems

Dynamic programming, branch-and-bound, and constraint programming are the standard solution principles for finding optimal solutions to machine scheduling problems. We propose a new hybrid optimization framework that integrates all three methodologies. The hybrid framework leads to powerful solution procedures. We demonstrate our approach through the optimal solution of the single-machine total weighted completion time scheduling … Read more

Convex Optimization of Centralized Inventory Operations

Given a finite set of outlets with joint normally distributed demands and identical holding and penalty costs, inventory centralization induces a cooperative cost allocation game with nonempty core. It is well known that for this newsvendor inventory setting the expected cost of centralization can be expressed as a constant multiple of the standard deviation of … Read more

Scenario Approximations of Chance Constraints

We consider an optimization problem of minimization of a linear function subject to chance constraints. In the multidimensional case this problem is, generically, a problem of minimizing under a nonconvex and difficult to compute constraints and as such is computationally intractable. We investigate the potential of conceptually simple scenario approximation of the chance constraints. The … Read more

An Improved Algorithm for Biobjective Integer Programs

A parametric algorithm for identifying the Pareto set of a biobjective integer program is proposed. The algorithm is based on the weighted Chebyshev (Tchebycheff) scalarization, and its running time is asymptotically optimal. A number of extensions are described, including: a technique for handling weakly dominated outcomes, a Pareto set approximation scheme, and an interactive version … Read more

Linear inequalities among graph invariants: using GraPHedron to uncover optimal relationships

Optimality of a linear inequality in finitely many graph invariants is defined through a geometric approach. For a fixed number of graph nodes, consider all the tuples of values taken by the invariants on a selected class of graphs. Then form the polytope which is the convex hull of all these tuples. By definition, the … Read more