Towards Optimal Offline Reinforcement Learning

We study offline reinforcement learning problems with a long-run average reward objective. The state-action pairs generated by any fixed behavioral policy thus follow a Markov chain, and the empirical state-action-next-state distribution satisfies a large deviations principle. We use the rate function of this large deviations principle to construct an uncertainty set for the unknown true … Read more

Solving Decision-Dependent Robust Problems as Bilevel Optimization Problems

Both bilevel and robust optimization are established fields of mathematical optimization and operations research. However, only until recently, the similarities in their mathematical structure has neither been studied theoretically nor exploited computationally. Based on the recent results by Goerigk et al. (2025), this paper is the first one that reformulates a given strictly robust optimization … Read more

Mixed Integer Linear Programming Formulations for Robust Surgery Scheduling

We introduce Mixed Integer Linear Programming (MILP) formulations for the two-stage robust surgery scheduling problem (2SRSSP). We derive these formulations by modeling the second-stage problem as a longest path problem on a layered acyclic graph and subsequently converting it into a linear program. This linear program is then dualized and integrated with the first-stage, resulting … Read more

Efficient LP warmstarting for linear modifications of the constraint matrix

We consider the problem of computing the optimal solution and objective of a linear program under linearly changing linear constraints. The problem studied is given by $\min c^t x \text{ s.t } Ax + \lambda Dx \leq b$ where $\lambda$ belongs to a set of predefined values $\Lambda$. Based on the information given by a … Read more

Two-Stage Distributionally Robust Optimization: Intuitive Understanding and Algorithm Development from the Primal Perspective

In this paper, we study the two-stage distributionally robust optimization (DRO) problem from the primal perspective. Unlike existing approaches, this perspective allows us to build a deeper and more intuitive understanding on DRO, to leverage classical and well established solution methods and to develop a general and fast decomposition algorithm (and its variants), and to … Read more

Multiple Kernel Learning-Aided Column-and-Constraint Generation Method

Two-stage robust optimization (two-stage RO), due to its ability to balance robustness and flexibility, has been widely used in various fields for decision-making under uncertainty. This paper proposes a multiple kernel learning (MKL)-aided column-and-constraint generation (CCG) method to address this issue in the context of data-driven decision optimization, and releases a corresponding registered Julia package, … Read more

Addressing Estimation Errors through Robust Portfolio Optimization

It is well known that the performance of the classical Markowitz model for portfolio optimization is extremely sensitive to estimation errors on the expected asset returns. Robust optimization mitigates this issue. We focus on ellipsoidal uncertainty sets around a point estimate of the expected asset returns. An important issue is the choice of the parameters … Read more

Effective Scenarios in Distributionally Robust Optimization with Wasserstein Distance

This paper studies effective scenarios in Distributionally Robust Optimization (DRO) problems defined on a finite number of realizations (also called scenarios) of the uncertain parameters. Effective scenarios are critical scenarios in DRO in the sense that their removal from the support of the considered distributions alters the optimal value. Ineffective scenarios are those whose removal … Read more

Correction to: A Lagrangian dual method for two-stage robust optimization with binary uncertainties

We provide a correction to the sufficient conditions under which closed-form expressions for the optimal Lagrange multiplier are provided in Subramanyam (2022). We first present a simple counterexample where the original conditions are insufficient, highlight where the original proof fails, and then provide modified conditions along with a correct proof of their validity. Finally, although … Read more

Distributionally Robust Optimization

Distributionally robust optimization (DRO) studies decision problems under uncertainty where the probability distribution governing the uncertain problem parameters is itself uncertain. A key component of any DRO model is its ambiguity set, that is, a family of probability distributions consistent with any available structural or statistical information. DRO seeks decisions that perform best under the … Read more