A Robust Optimization Framework for Wildfire Fuel Management
ArticleDownload View PDF
ArticleDownload View PDF
In this paper, we introduce a framework for contextual distributionally robust optimization (DRO) that considers the causal and continuous structure of the underlying distribution by developing interpretable and tractable decision rules that prescribe decisions using covariates. We first introduce the causal Sinkhorn discrepancy (CSD), an entropy-regularized causal Wasserstein distance that encourages continuous transport plans while … Read more
We consider a quadratic minmax problem with coupled inner constraints and propose a method to compute a class of stationary points. To motivate the need to compute such stationary points, we first show that they are meaningful, in the sense that they can be locally optimal for our problem under suitable linear independence and second-order … Read more
This paper proposes a unified framework for designing robustness in optimization under uncertainty using gauge sets, convex sets that generalize distance and capture how distributions may deviate from a nominal reference. Representing robustness through a gauge set reweighting formulation brings many classical robustness paradigms under a single convex-analytic perspective. The corresponding dual problem, the upper … Read more
Distributionally robust optimization (DRO) has emerged as a powerful paradigm for reliable decision-making under uncertainty. This paper focuses on DRO with ambiguity sets defined via the Sinkhorn discrepancy: an entropy-regularized Wasserstein distance, referred to as Sinkhorn DRO. Existing work primarily addresses Sinkhorn DRO from a dual perspective, leveraging its formulation as a conditional stochastic optimization … Read more
We develop a unified framework for robust nonsmooth optimization problems with equilibrium constraints (UNMPEC). As a foundation, we study a robust nonsmooth nonlinear program with uncertainty in both the objective function and the inequality constraints (UNP). Using Clarke subdifferentials, we establish Karush–Kuhn–Tucker (KKT)–type necessary optimality conditions under an extended no–nonzero–abnormal–multiplier constraint qualification (ENNAMCQ). When the … Read more
Large language models (LLMs) trained with reinforcement learning from human feed- back (RLHF) struggle with complex instructions that bundle multiple, potentially con- icting requirements. We introduce constraint decomposition, a framework that separates multi-objective instructions into orthogonal componentssemantic correctness, structural organization, format specications, and meta-level requirementsand optimizes each in- dependently before hierarchical combination. Our approach addresses … Read more
Recently robust combinatorial optimization problems with budgeted interdiction uncertainty affecting cardinality-based constraints or objective were considered by presenting, comparing and experimenting with compact formulations. In this paper we present a compact formulation for the case in which locally budgeted interdiction uncertainty affects the objective function and covering constraints simultaneously. ArticleDownload View PDF
Chromatographic separation plays a vital role in various areas, as this technique can deliver high-quality products both in lab- and industrial-scale processes. Economical and also ecological benefits can be expected when optimizing such processes with mathematical methods. However, even small perturbations in the operating conditions can result in significantly altered results, which may lead to … Read more
We introduce a two-stage robust optimization (RO) framework for the integrated planning of a drone-based disaster relief operations problem (DDROP). Given sets of demand points, candidate locations for establishing drone-supported relief facilities, facility types, drone types, and relief items types, our first-stage problem solves the following problems simultaneously: (i) a location problem that determines the … Read more