Robust Admission Via Two-Stage Stable Matching Under Ranking Uncertainty

We study a two-stage admission and assignment problem under uncertainty arising in university admission systems. In the first stage, applicants are admitted to an initial two-year program. In the second stage, admitted applicants are assigned to degree programs through an articulation mechanism subject to capacity constraints. Uncertainty stems from the academic performance of admitted applicants … Read more

Exact and Heuristic Methods for Gamma-Robust Min-Max Problems

Bilevel optimization is a powerful tool for modeling hierarchical decision-making processes, which arise in various real-world applications. Due to their nested structure, however, bilevel problems are intrinsically hard to solve—even if all variables are continuous and all parameters of the problem are exactly known. Further challenges arise if mixed-integer aspects and problems under uncertainty are … Read more

Contextual Distributionally Robust Optimization with Causal and Continuous Structure: An Interpretable and Tractable Approach

In this paper, we introduce a framework for contextual distributionally robust optimization (DRO) that considers the causal and continuous structure of the underlying distribution by developing interpretable and tractable decision rules that prescribe decisions using covariates. We first introduce the causal Sinkhorn discrepancy (CSD), an entropy-regularized causal Wasserstein distance that encourages continuous transport plans while … Read more

A single loop method for quadratic minmax optimization

We consider a quadratic minmax problem with coupled inner constraints and propose a method to compute a class of stationary points. To motivate the need to compute such stationary points, we first show that they are meaningful, in the sense that they can be locally optimal for our problem under suitable linear independence and second-order … Read more

A Gauge Set Framework for Flexible Robustness Design

This paper proposes a unified framework for designing robustness in optimization under uncertainty using gauge sets, convex sets that generalize distance and capture how distributions may deviate from a nominal reference. Representing robustness through a gauge set reweighting formulation brings many classical robustness paradigms under a single convex-analytic perspective. The corresponding dual problem, the upper … Read more

Iterative Sampling Methods for Sinkhorn Distributionally Robust Optimization

Distributionally robust optimization (DRO) has emerged as a powerful paradigm for reliable decision-making under uncertainty. This paper focuses on DRO with ambiguity sets defined via the Sinkhorn discrepancy: an entropy-regularized Wasserstein distance, referred to as Sinkhorn DRO. Existing work primarily addresses Sinkhorn DRO from a dual perspective, leveraging its formulation as a conditional stochastic optimization … Read more

Robust optimality for nonsmooth mathematical programs with equilibrium constraints under data uncertainty

We develop a unified framework for robust nonsmooth optimization problems with equilibrium constraints (UNMPEC). As a foundation, we study a robust nonsmooth nonlinear program with uncertainty in both the objective function and the inequality constraints (UNP). Using Clarke subdifferentials, we establish Karush–Kuhn–Tucker (KKT)–type necessary optimality conditions under an extended no–nonzero–abnormal–multiplier constraint qualification (ENNAMCQ). When the … Read more

Constraint Decomposition for Multi-Objective Instruction-Following in Large Language Models

Large language models (LLMs) trained with reinforcement learning from human feed- back (RLHF) struggle with complex instructions that bundle multiple, potentially con- icting requirements. We introduce constraint decomposition, a framework that separates multi-objective instructions into orthogonal componentssemantic correctness, structural organization, format specications, and meta-level requirementsand optimizes each in- dependently before hierarchical combination. Our approach addresses … Read more

Robust combinatorial optimization problems under locally budgeted interdiction uncertainty against the objective function and covering constraints

Recently robust combinatorial optimization problems with budgeted interdiction uncertainty affecting cardinality-based constraints or objective were considered by presenting, comparing and experimenting with compact formulations. In this paper we present a compact formulation for the case in which locally budgeted interdiction uncertainty affects the objective function and covering constraints simultaneously. ArticleDownload View PDF