An oracle-based framework for robust combinatorial optimization

We propose a general solution approach for min-max-robust counterparts of combinatorial optimization problems with uncertain linear objectives. We focus on the discrete scenario case, but our approach can be extended to other types of uncertainty sets such as polytopes or ellipsoids. Concerning the underlying certain problem,the algorithm is entirely oracle-based, i.e., our approach only requires … Read more

A Lagrangian Dual Method for Two-Stage Robust Optimization with Binary Uncertainties

This paper presents a new exact method to calculate worst-case parameter realizations in two-stage robust optimization problems with categorical or binary-valued uncertain data. Traditional exact algorithms for these problems, notably Benders decomposition and column-and-constraint generation, compute worst-case parameter realizations by solving mixed-integer bilinear optimization subproblems. However, their numerical solution can be computationally expensive not only … Read more

Mean-Covariance Robust Risk Measurement

We introduce a universal framework for mean-covariance robust risk measurement and portfolio optimization. We model uncertainty in terms of the Gelbrich distance on the mean-covariance space, along with prior structural information about the population distribution. Our approach is related to the theory of optimal transport and exhibits superior statistical and computational properties than existing models. … Read more

Bayesian Distributionally Robust Optimization

We introduce a new framework, Bayesian Distributionally Robust Optimization (Bayesian-DRO), for data-driven stochastic optimization where the underlying distribution is unknown. Bayesian-DRO contrasts with most of the existing DRO approaches in the use of Bayesian estimation of the unknown distribution. To make computation of Bayesian updating tractable, Bayesian-DRO first assumes the underlying distribution takes a parametric … Read more

Risk-averse Regret Minimization in Multi-stage Stochastic Programs

Within the context of optimization under uncertainty, a well-known alternative to minimizing expected value or the worst-case scenario consists in minimizing regret. In a multi-stage stochastic programming setting with a discrete probability distribution, we explore the idea of risk-averse regret minimization, where the benchmark policy can only benefit from foreseeing Delta steps into the future. … Read more

The Value of Robust Assortment Optimization Under Ranking-based Choice Models

We study a class of robust assortment optimization problems that was proposed by Farias, Jagabathula, and Shah (2013). The goal in these problems is to find an assortment that maximizes a firm’s worst-case expected revenue under all ranking-based choice models that are consistent with the historical sales data generated by the firm’s past assortments. We … Read more

Robust Concave Utility Maximization over Chance Constraints

This paper first studies an expected utility problem with chance constraints and incomplete information on a decision maker’s utility function. The model maximizes the worst-case expected utility of random outcome over a set of concave functions within a novel ambiguity set, while the underlying probability distribution is known. To obtain computationally tractable formulations, we employ … Read more

Tractable Robust Supervised Learning Models

At the heart of supervised learning is a minimization problem with an objective function that evaluates a set of training data over a loss function that penalizes poor fitting and a regularization function that penalizes over-fitting to the training data. More recently, data-driven robust optimization based learning models provide an intuitive robustness perspective of regularization. … Read more

Quantitative Statistical Robustness in Distributionally Robust Optimization Models

In distributionally robust optimization (DRO) models, sample data of the underlying exogenous uncertainty parameters are often used to construct an ambiguity set of plausible probability distributions. It is common to assume that the sample data do not contain noise. This assumption may not be fulfilled in some data-driven problems where the perceived data are potentially … Read more

Adjustable robust optimization with discrete uncertainty

In this paper, we study Adjustable Robust Optimization (ARO) problems with discrete uncertainty. Under a very general modeling framework, we show that such two-stage robust problems can be exactly reformulated as ARO problems with objective uncertainty only. This reformulation is valid with and without the fixed recourse assumption and is not limited to continuous wait-and-see … Read more