Globalized Distributionally Robust Counterpart

We extend the notion of globalized robustness to consider distributional information beyond the support of the ambiguous probability distribution. We propose the globalized distributionally robust counterpart that disallows any (resp., allows limited) constraint violation for distributions residing (resp., not residing) in the ambiguity set. By varying its inputs, our proposal recovers several existing perceptions of … Read more

European Gas Infrastructure Expansion Planning: An Adaptive Robust Optimization Approach

The European natural gas market is undergoing fundamental changes, fostering uncertainty regarding both supply and demand. This uncertainty is concentrated in the value of strategic infrastructure investments, e.g., projects of common interest supported by European Union public funds, to safeguard security of supply. This paper addresses this matter by suggesting an adaptive robust optimization framework … Read more

Distributionally Favorable Optimization: A Framework for Data-driven Decision-making with Endogenous Outliers

A typical data-driven stochastic program aims to seek the best decision that minimizes the sum of a deterministic cost function and an expected recourse function under a given distribution. Recently, much success has been witnessed in the development of Distributionally Robust Optimization (DRO), which considers the worst-case expected recourse function under the least favorable probability … Read more

A Branch & Bound Algorithm for Robust Binary Optimization with Budget Uncertainty

Since its introduction in the early 2000s, robust optimization with budget uncertainty has received a lot of attention. This is due to the intuitive construction of the uncertainty sets and the existence of a compact robust reformulation for (mixed-integer) linear programs. However, despite its compactness, the reformulation performs poorly when solving robust integer problems due … Read more

Efficient and Robust Mixed-Integer Optimization Methods for Training Binarized Deep Neural Networks

Compared to classical deep neural networks its binarized versions can be useful for applications on resource-limited devices due to their reduction in memory consumption and computational demands. In this work we study deep neural networks with binary activation functions and continuous or integer weights (BDNN). We show that the BDNN can be reformulated as a … Read more

A Unifying Framework for the Capacitated Vehicle Routing Problem under Risk and Ambiguity

We propose a generic model for the capacitated vehicle routing problem (CVRP) under demand uncertainty. By combining risk measures, satisficing measures or disutility functions with complete or partial characterizations of the probability distribution governing the demands, our formulation bridges the popular but often independently studied paradigms of stochastic programming and distributionally robust optimization. We characterize … Read more

Contextual Decision-making under Parametric Uncertainty and Data-driven Optimistic Optimization

We consider decision-making problems with contextual information, in which the reward function involves uncertain parameters that can be predicted using covariates. To quantify the uncertainty of the reward, we propose a new parameter uncertainty set based on a supervised learning oracle. We show that the worst/best-case reward over the proposed parameter uncertainty set serves as … Read more

Screening with Limited Information: A Dual Perspective and A Geometric Approach

Consider a seller seeking a selling mechanism to maximize the worst-case revenue obtained from a buyer whose valuation distribution lies in a certain ambiguity set. For a generic convex ambiguity set, we show via the minimax theorem that strong duality holds between the problem of finding the optimal robust mechanism and a minimax pricing problem … Read more

Adjustability in Robust Linear Optimization

We investigate the concept of adjustability — the difference in objective values between two types of dynamic robust optimization formulations: one where (static) decisions are made before uncertainty realization, and one where uncertainty is resolved before (adjustable) decisions. This difference reflects the value of information and decision timing in optimization under uncertainty, and is related … Read more

Robust CARA Optimization

We propose robust optimization models and their tractable approximations that cater for ambiguity-averse decision makers whose underlying risk preferences are consistent with constant absolute risk aversion (CARA). Specifically, we focus on maximizing the worst-case expected exponential utility where the underlying uncertainty is generated from a set of stochastically independent factors with ambiguous marginals. To obtain … Read more