Distributionally Robust Reward-risk Ratio Programming with Wasserstein Metric

Reward-risk ratio (RR) is a very important stock market definition. In recent years, people extend RR model as distributionally robust reward-risk ratio (DRR) to capture the situation that the investor does not have complete information on the distribution of the underlying uncertainty. In this paper, we study the DRR model where the ambiguity on the … Read more

The Robust Uncapacitated Lot Sizing Model with Uncertainty Range

We study robust versions of the uncapacitated lot sizing problem, where the demand is subject to uncertainty. The robust models are guided by three parameters, namely, the total scaled uncertainty budget, the minimum number of periods in which one would like the demand to be protected against uncertainty, and the minimum scaled protection level per … Read more

A Robust Approach to the Capacitated Vehicle Routing Problem with Uncertain Costs

We investigate a robust approach for solving the Capacitated Vehicle Routing Problem (CVRP) with uncertain travel times. It is based on the concept of K-adaptability, which allows to calculate a set of k feasible solutions in a preprocessing phase before the scenario is revealed. Once a scenario occurs, the corresponding best solution may be picked … Read more

Distributionally robust chance constrained optimal power flow with renewables: A conic reformulation

The uncertainty associated with renewable energy sources introduces significant challenges in optimal power flow (OPF) analysis. A variety of new approaches have been proposed that use chance constraints to limit line or bus overload risk in OPF models. Most existing formulations assume that the probability distributions associated with the uncertainty are known a priori or … Read more

Robust Dual Dynamic Programming

Multi-stage robust optimization problems, where the decision maker can dynamically react to consecutively observed realizations of the uncertain problem parameters, pose formidable theoretical and computational challenges. As a result, the existing solution approaches for this problem class typically determine subopti- mal solutions under restrictive assumptions. In this paper, we propose a robust dual dynamic programming … Read more

Distributionally Robust Project Crashing with Partial or No Correlation Information

Crashing is a method for optimally shortening the project makespan by reducing the time of one or more activities in a project network by allocating resources to it. Activity durations are however uncertain and techniques in stochastic optimization, robust optimization and distributionally robust optimization have been developed to tackle this problem. In this paper, we … Read more

Decision Rule Bounds for Two-Stage Stochastic Bilevel Programs

We study stochastic bilevel programs where the leader chooses a binary here-and-now decision and the follower responds with a continuous wait-and-see-decision. Using modern decision rule approximations, we construct lower bounds on an optimistic version and upper bounds on a pessimistic version of the leader’s problem. Both bounding problems are equivalent to explicit mixed-integer linear programs … Read more

Efficient methods for several classes of ambiguous stochastic programming problems under mean-MAD information

We consider decision making problems under uncertainty, assuming that only partial distributional information is available – as is often the case in practice. In such problems, the goal is to determine here-and-now decisions, which optimally balance deterministic immediate costs and worst-case expected future costs. These problems are challenging, since the worst-case distribution needs to be … Read more

Maximizing a class of utility functions over the vertices of a polytope

Given a polytope X, a monotone concave univariate function g, and two vectors c and d, we study the discrete optimization problem of finding a vertex of X that maximizes the utility function c’x + g(d’x). This problem has numerous applications in combinatorial optimization with a probabilistic objective, including estimation of project duration with stochastic … Read more

A Copositive Approach for Two-Stage Adjustable Robust Optimization with Uncertain Right-Hand Sides

We study two-stage adjustable robust linear programming in which the right-hand sides are uncertain and belong to a convex, compact uncertainty set. This problem is NP-hard, and the affine policy is a popular, tractable approximation. We prove that under standard and simple conditions, the two-stage problem can be reformulated as a copositive optimization problem, which … Read more