Improving sample average approximation using distributional robustness

We consider stochastic optimization problems in which we aim to minimize the expected value of an objective function with respect to an unknown distribution of random parameters. We analyse the out-of-sample performance of solutions obtained by solving a distributionally robust version of the sample average approximation problem for unconstrained quadratic problems, and derive conditions under … Read more

Optimal Crashing of an Activity Network with Disruptions

In this paper, we consider an optimization problem involving crashing an activity network under a single disruption. A disruption is an event whose magnitude and timing are random. When a disruption occurs the duration of an activity, which has not yet started, can change. We formulate a two-stage stochastic mixed integer program, in which the … Read more

Stochastic Dynamic Linear Programming: A Sequential Sampling Algorithm for Multistage Stochastic Linear Programming

Multistage stochastic programming deals with operational and planning problems that involve a sequence of decisions over time while responding to realizations that are uncertain. Algorithms designed to address multistage stochastic linear programming (MSLP) problems often rely upon scenario trees to represent the underlying stochastic process. When this process exhibits stagewise independence, sampling-based techniques, particularly the … Read more

Stochastic generalized gradient methods for training nonconvex nonsmooth neural networks

The paper observes a similarity between the stochastic optimal control of discrete dynamical systems and the learning multilayer neural networks. It focuses on contemporary deep networks with nonconvex nonsmooth loss and activation functions. The machine learning problems are treated as nonconvex nonsmooth stochastic optimization problems. As a model of nonsmooth nonconvex dependences, the so-called generalized … Read more

Nurse Staffing under Absenteeism: A Distributionally Robust Optimization Approach

We study the nurse staffing problem under random nurse demand and absenteeism. While the demand uncertainty is exogenous (stemming from the random patient census), the absenteeism uncertainty is endogenous, i.e., the number of nurses who show up for work partially depends on the nurse staffing level. For the quality of care, many hospitals have developed … Read more

Risk-Averse Optimal Control

In the context of multistage stochastic optimization, it is natural to consider nested risk measures, which originate by repeatedly composing risk measures, conditioned on realized observations. Starting from this discrete time setting, we extend the notion of nested risk measures to continuous time by adapting the risk levels in a time dependent manner. This time … Read more

Substantiation of the Backpropagation Technique via the Hamilton-Pontryagin Formalism for Training Nonconvex Nonsmooth Neural Networks

The paper observes the similarity between the stochastic optimal control of discrete dynamical systems and the training multilayer neural networks. It focuses on contemporary deep networks with nonconvex nonsmooth loss and activation functions. In the paper, the machine learning problems are treated as nonconvex nonsmooth stochastic optimization problems. As a model of nonsmooth nonconvex dependences, … Read more

Generalized Gradients in Problems of Dynamic Optimization, Optimal Control, and Machine Learning

In this work, nonconvex nonsmooth problems of dynamic optimization, optimal control in discrete time (including feedback control), and machine learning are considered from a common point of view. An analogy is observed between tasks of controlling discrete dynamic systems and training multilayer neural networks with nonsmooth target function and connections. Methods for calculating generalized gradients … Read more

Periodical Multistage Stochastic Programs

In some applications the considered multistage stochastic programs have a periodical behavior. We show that in such cases it is possible to drastically reduce the number of stages by introducing a periodical analog of the so-called Bellman equations for discounted infinite horizon problems, used in Markov Decision Processes and Stochastic Optimal Control. Furthermore, we describe … Read more

Penalized stochastic gradient methods for stochastic convex optimization with expectation constraints

Stochastic gradient method and its variants are simple yet effective for minimizing an expectation function over a closed convex set. However, none of these methods are applicable to solve stochastic programs with expectation constraints, since the projection onto the feasible set is prohibitive. To deal with the expectation constrained stochastic convex optimization problems, we propose … Read more