Distributionally Robust Optimization with Confidence Bands for Probability Density Functions

Distributionally robust optimization (DRO) has been introduced for solving stochastic programs where the distribution of the random parameters is unknown and must be estimated by samples from that distribution. A key element of DRO is the construction of the ambiguity set, which is a set of distributions that covers the true distribution with a high … Read more

A Single Time-Scale Stochastic Approximation Method for Nested Stochastic Optimization

We study constrained nested stochastic optimization problems in which the objective function is a composition of two smooth functions whose exact values and derivatives are not available. We propose a single time-scale stochastic approximation algorithm, which we call the Nested Averaged Stochastic Approximation (NASA), to find an approximate stationary point of the problem. The algorithm … Read more

Reinforcement Learning via Parametric Cost Function Approximation for Multistage Stochastic Programming

The most common approaches for solving stochastic resource allocation problems in the research literature is to either use value functions (“dynamic programming”) or scenario trees (“stochastic programming”) to approximate the impact of a decision now on the future. By contrast, common industry practice is to use a deterministic approximation of the future which is easier … Read more

A stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs

We propose a stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs. Our approach is based on a bi-objective viewpoint of chance-constrained programs that seeks solutions on the efficient frontier of optimal objective value versus risk of constraint violation. To this end, we construct a reformulated problem whose objective is to minimize … Read more

Machine learning approach to chance-constrained problems: An algorithm based on the stochastic gradient descent

We consider chance-constrained problems with discrete random distribution. We aim for problems with a large number of scenarios. We propose a novel method based on the stochastic gradient descent method which performs updates of the decision variable based only on looking at a few scenarios. We modify it to handle the non-separable objective. A complexity … Read more

Large-scale Influence Maximization via Maximal Covering Location

Influence maximization aims at identifying a limited set of key individuals in a (social) network which spreads information based on some propagation model and maximizes the number of individuals reached. We show that influence maximization based on the probabilistic independent cascade model can be modeled as a stochastic maximal covering location problem. A reformulation based … Read more

Decomposition Methods for Solving Two-Stage Distributionally Robust Optimization Problems

Decomposition methods have been well studied for solving two-stage and multi-stage stochastic programming problems, see [29, 32, 33]. In this paper, we propose an algorithmic framework based on the fundamental ideas of the methods for solving two-stage minimax distributionally robust optimization (DRO) problems where the underlying random variables take a finite number of distinct values. … Read more

Volumetric barrier decomposition algorithms for two-stage stochastic linear semi-infinite programming

In this paper, we study the two-stage stochastic linear semi-infinite programming with recourse to handle uncertainty in data defining (deterministic) linear semi-infinite programming. We develop and analyze volumetric barrier decomposition-based interior point methods for solving this class of optimization problems, and present a complexity analysis of the proposed algorithms. We establish our convergence analysis by … Read more

Stochastic Hydro-thermal Unit Commitment via Multi-level Scenario Trees and Bundle Regularization

For an electric power mix subject to uncertainty, the stochastic unit-commitment problem finds short-term optimal generation schedules that satisfy several system-wide constraints. In regulated electricity markets, this very practical and important problem is used by the system operator to decide when each unit is to be started or stopped, and to define how to generate … Read more

Energy and Reserve Dispatch with Distributionally Robust Joint Chance Constraints

We develop a two-stage stochastic program for energy and reserve dispatch, which ensures the safe operation of a power system with a high penetration of renewables and a strong interdependence with the natural gas system. Distributionally robust joint chance constraints with Wasserstein ambiguity sets ensure that there is no need for load shedding and renewable … Read more