Data-Driven Optimization of Reward-Risk Ratio Measures

We investigate a class of fractional distributionally robust optimization problems with uncertain probabilities. They consist in the maximization of ambiguous fractional functions representing reward-risk ratios and have a semi-infinite programming epigraphic formulation. We derive a new fully parameterized closed-form to compute a new bound on the size of the Wasserstein ambiguity ball. We design a … Read more

Data-Driven Optimization of Reward-Risk Ratio Measures

We investigate a class of fractional distributionally robust optimization problems with uncertain probabilities. They consist in the maximization of ambiguous fractional functions representing reward-risk ratios and have a semi-infinite programming epigraphic formulation. We derive a new fully parameterized closed-form to compute a new bound on the size of the Wasserstein ambiguity ball. We design a … Read more

Distributionally Robust Stochastic Optimization with Dependence Structure

Distributionally robust stochastic optimization (DRSO) is a framework for decision-making problems under certainty, which finds solutions that perform well for a chosen set of probability distributions. Many different approaches for specifying a set of distributions have been proposed. The choice matters, because it affects the results, and the relative performance of different choices depend on … Read more

Regularized Stochastic Dual Dynamic Programming for convex nonlinear optimization problems

We define a regularized variant of the Dual Dynamic Programming algorithm called REDDP (REgularized Dual Dynamic Programming) to solve nonlinear dynamic programming equations. We extend the algorithm to solve nonlinear stochastic dynamic programming equations. The corresponding algorithm, called SDDP-REG, can be seen as an extension of a regularization of the Stochastic Dual Dynamic Programming (SDDP) … Read more

Scenario Reduction Revisited: Fundamental Limits and Guarantees

The goal of scenario reduction is to approximate a given discrete distribution with another discrete distribution that has fewer atoms. We distinguish continuous scenario reduction, where the new atoms may be chosen freely, and discrete scenario reduction, where the new atoms must be chosen from among the existing ones. Using the Wasserstein distance as measure … Read more

Communication-Efficient Algorithms for Decentralized and Stochastic Optimization

We present a new class of decentralized first-order methods for nonsmooth and stochastic optimization problems defined over multiagent networks. Considering that communication is a major bottleneck in decentralized optimization, our main goal in this paper is to develop algorithmic frameworks which can significantly reduce the number of inter-node communications. We first propose a decentralized primal-dual … Read more

Quantitative Stability Analysis for Minimax Distributionally Robust RiskOptimization

This paper considers distributionally robust formulations of a two stage stochastic programming problem with the objective of minimizing a distortion risk of the minimal cost incurred at the second stage. We carry out stability analysis by looking into variations of the ambiguity set under the Wasserstein metric, decision spaces at both stages and the support … Read more

On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems

We consider well-known decomposition techniques for multistage stochastic programming and a new scheme based on normal solutions for stabilizing iterates during the solution process. The given algorithms combine ideas from finite perturbation of convex programs and level bundle methods to regularize the so-called forward step of these decomposition methods. Numerical experiments on a hydrothermal scheduling … Read more

A Stochastic Programming Approach for Electric Vehicle Charging Network Design

Advantages of electric vehicles (EV) include reduction of greenhouse gas and other emissions, energy security, and fuel economy. The societal benefits of large-scale adoption of EVs cannot be realized without adequate deployment of publicly accessible charging stations. We propose a two-stage stochastic programming model to determine the optimal network of charging stations for a community … Read more

Two-stage Stochastic Programming under Multivariate Risk Constraints with an Application to Humanitarian Relief Network Design

In this study, we consider two classes of multicriteria two-stage stochastic programs in finite probability spaces with multivariate risk constraints. The first-stage problem features a multivariate stochastic benchmarking constraint based on a vector-valued random variable representing multiple and possibly conflicting stochastic performance measures associated with the second-stage decisions. In particular, the aim is to ensure … Read more