Scenario Tree Reduction Methods Through Changing Node Values

To develop practical and efficient scenario tree reduction methods, we introduce a new methodology which allows for changing node values, and an easy-to-calculate distance function to measure the difference between two scenario trees. Based on minimizing the new distance, we first construct a primitive scenario tree reduction model which also minimizes the Wasserstein distance between … Read more

A Polyhedral Study on Chance Constrained Program with Random Right-Hand Side

The essential structure of the mixed–integer programming formulation for chance–constrained program (CCP) is the intersection of multiple mixing sets with a $0-1$ knapsack. To improve our computational capacity on CCP, an underlying substructure, the (single) mixing set with a $0-1$ knapsack, has received substantial attentions recently. In this study, we consider a CCP problem with … Read more

A stochastic program with tractable time series and affine decision rules for the reservoir management problem

This paper proposes a multi-stage stochastic programming formulation for the reservoir management problem. Our problem specifically consists in minimizing the risk of floods over a fixed time horizon for a multi-dimensional hydro-electrical complex. We consider well-studied linear time series model and enhance the approach to consider heteroscedasticity. Using these stochastic processes under very general distributional … Read more

Algorithms for stochastic optimization with expectation constraints

This paper considers the problem of minimizing an expectation function over a closed convex set, coupled with an expectation constraint on either decision variables or problem parameters. We first present a new stochastic approximation (SA) type algorithm, namely the cooperative SA (CSA), to handle problems with the expectation constraint on devision variables. We show that … Read more

Stochastic geometric optimization with joint probabilistic constraints

This paper discusses geometric programs with joint probabilistic constraints. When the stochastic parameters are normally distributed and independent of each other, we approximate the problem by using piecewise polynomial functions with non-negative coefficients, and transform the approximation problem into a convex geometric program. We prove that this approximation method provides a lower bound. Then, we … Read more

Distributionally Robust Stochastic Optimization with Wasserstein Distance

Distributionally robust stochastic optimization (DRSO) is an approach to optimization under uncertainty in which, instead of assuming that there is an underlying probability distribution that is known exactly, one hedges against a chosen set of distributions. In this paper, we consider sets of distributions that are within a chosen Wasserstein distance from a nominal distribution. … Read more

Combining Progressive Hedging with a Frank-Wolfe Method to Compute Lagrangian Dual Bounds in Stochastic Mixed-Integer Programming

We present a new primal-dual algorithm for computing the value of the Lagrangian dual of a stochastic mixed-integer program (SMIP) formed by relaxing its nonanticipativity constraints. The algorithm relies on the well-known progressive hedging method, but unlike previous progressive hedging approaches for SMIP, our algorithm can be shown to converge to the optimal Lagrangian dual … Read more

Statistical inference and hypotheses testing of risk averse stochastic programs

We study statistical properties of the optimal value and optimal solutions of the Sample Average Approximation of risk averse stochastic problems. Central Limit Theorem type results are derived for the optimal value and optimal solutions when the stochastic program is expressed in terms of a law invariant coherent risk measure. The obtained results are applied … Read more

A Two-Stage Stochastic Program for Multi-shift, Multi-analyst, Workforce Optimization with Multiple On Call Options

Motivated by a cybersecurity workforce optimization problem, this paper investigates optimizing staffing and shift scheduling decisions given unknown demand and multiple on call staffing options at a 24/7 firm with three shifts per day, three analyst types, and several staffing and scheduling constraints. We model this problem as a two-stage stochastic program and solve it … Read more

An Adaptive Partition-based Level Decomposition for Solving Two-stage Stochastic Programs with Fixed Recourse

We present a computational study of several strategies to solve two-stage stochastic linear programs by integrating the adaptive partition-based approach with level decomposition. A partition-based formulation is a relaxation of the original stochastic program, obtained by aggregating variables and constraints according to a scenario partition. Partition refinements are guided by the optimal second-stage dual vectors … Read more