Conditional gradient method for multiobjective optimization

We analyze the conditional gradient method, also known as Frank-Wolfe method, for constrained multiobjective optimization. The constraint set is assumed to be convex and compact, and the objectives functions are assumed to be continuously differentiable. The method is considered with different strategies for obtaining the step sizes. Asymptotic convergence properties and iteration-complexity bounds with and … Read more

Energy-Efficient Timetabling in a German Underground System

Timetabling of railway traffic and other modes of transport is among the most prominent applications of discrete optimization in practice. However, it has only been recently that the connection between timetabling and energy consumption has been studied more extensively. In our joint project VAG Verkehrs-Aktiengesellschaft, the transit authority and operator of underground transport in the … Read more

Inexact cuts in SDDP applied to multistage stochastic nondifferentiable problems

In [13], an Inexact variant of Stochastic Dual Dynamic Programming (SDDP) called ISDDP was introduced which uses approximate (instead of exact with SDDP) primal dual solutions of the problems solved in the forward and backward passes of the method. That variant of SDDP was studied in [13] for linear and for differentiable nonlinear Multistage Stochastic … Read more

Openness, Holder metric regularity and Holder continuity properties of semialgebraic set-valued maps

Given a semialgebraic set-valued map $F \colon \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ with closed graph, we show that the map $F$ is Holder metrically subregular and that the following conditions are equivalent: (i) $F$ is an open map from its domain into its range and the range of $F$ is locally closed; (ii) the map $F$ is … Read more

Generation Expansion Planning with Revenue Adequacy Constraints

Generation capacity expansion models have traditionally taken the vantage point of a centralized planner seeking to find cost-optimal generation capacity to reliably meet load over decadal time scales. Often assuming perfectly competitive players, these models attempt to provide guidance for system planners without necessarily ensuring that individual generators are adequately remunerated for their generation, flexibility, … Read more

On monotonicity and search traversal in copositivity detection algorithms

Matrix copositivity has an important theoretical background. Over the last decades, the use of algorithms to check copositivity has made a big progress. Methods are based on spatial branch and bound, transformation to Mixed Integer Programming, implicit enumeration of KKT points or face-based search. Our research question focuses on exploiting the mathematical properties of the … Read more

Dual Decomposition of Two-Stage Distributionally Robust Mixed-Integer Programming under the Wasserstein Ambiguity Set

We develop a dual decomposition of two-stage distributionally robust mixed-integer programming (DRMIP) under the Wasserstein ambiguity set. The dual decomposition is based on the Lagrangian dual of DRMIP, which results from the Lagrangian relaxation of the nonanticipativity constraints and min-max inequality. We present two Lagrangian dual problem formulations, each of which is based on different principle. We show … Read more

Estimating the Size of Branch-and-Bound Trees

This paper investigates the estimation of the size of Branch-and-Bound (B&B) trees for solving mixed-integer programs. We first prove that the size of the B&B tree cannot be approximated within a factor of~2 for general binary programs, unless P equals NP. Second, we review measures of the progress of the B&B search, such as the … Read more

New subspace minimization conjugate gradient methods based on regularization model for unconstrained optimization

In this paper, two new subspace minimization conjugate gradient methods based on p-regularization models are proposed, where a special scaled norm in p-regularization model is analyzed. Diffierent choices for special scaled norm lead to different solutions to the p-regularized subproblem. Based on the analyses of the solutions in a two-dimensional subspace, we derive new directions … Read more

Using gradient directions to get global convergence of Newton-type methods

The renewed interest in Steepest Descent (SD) methods following the work of Barzilai and Borwein [IMA Journal of Numerical Analysis, 8 (1988)] has driven us to consider a globalization strategy based on SD, which is applicable to any line-search method. In particular, we combine Newton-type directions with scaled SD steps to have suitable descent directions. … Read more