Computing Optimized Path Integrals for Knapsack Feasibility

A generating function technique for solving integer programs via the evaluation of complex path integrals is discussed from a theoretical and computational perspective. Applying the method to solve knapsack feasibility problems, it is demonstrated how the presented numerical integration algorithm benefits from pre-optimizing the path of integration. After discussing the algorithmic set-up in detail, a … Read more

Mixed-Integer Optimal Control for Multimodal Chromatography

Multimodal chromatography is a powerful tool in the downstream processing of biopharmaceuticals. To fully benefit from this technology, an efficient process strategy must be determined beforehand. To facilitate this task, we employ a recent mechanistic model for multimodal chromatography, which takes salt concentration and pH into account, and we present a mathematical framework for the … Read more

Improving relaxations for potential-driven network flow problems via acyclic flow orientations

The class of potential-driven network flow problems provides important models for a range of infrastructure networks. For real-world applications, they need to be combined with integer models for switching certain network elements, giving rise to hard-to-solve MINLPs. We observe that on large-scale real-world meshed networks the usually employed relaxations are rather weak due to cycles … Read more

ASTS Orientations on Undirected Graphs: Structural analysis and enumeration

All feasible flows in potential-driven networks induce an orientation on the undirected graph underlying the network. Clearly, these orientations must satisfy two conditions: they are acyclic and there are no “dead ends” in the network, i.e. each source requires outgoing flows, each sink requires incoming flows, and each transhipment vertex requires both an incoming and … Read more

Cycle-based formulations in Distance Geometry

The distance geometry problem asks to find a realization of a given simple edge-weighted graph in a Euclidean space of given dimension K, where the edges are realized as straight segments of lengths equal (or as close as possible) to the edge weights. The problem is often modelled as a mathematical programming formulation involving decision … Read more

Solving IP via Complex Integration on Shortest Paths

Using the weighted geometric series expansion, it is shown how integer programming can be solved by evaluating complex path integrals based on a multi-path version of Cauchy’s integral formula. In contrast to existing generating function approaches, the algorithm relies only on complex quadrature and no algebraic techniques are needed. In view of fast implementations of … Read more

Rates of convergence of sample average approximation under heavy tailed distributions

In this paper, we consider the rate of convergence with sample average approximation (SAA) under heavy tailed distributions and quantify it under both independent identically distributed (iid) sampling and non-iid sampling. We rst derive the polynomial rate of convergence for random variable under iid sampling. Then, the uniform polynomial rates of convergence for both random … Read more

Optimality conditions in discrete-continuous nonlinear optimization

This paper presents necessary and sufficient optimality conditions for discrete-continuous nonlinear optimization problems including mixed-integer nonlinear problems. This theory does not utilize an extension of the Lagrange theory of continuous optimization but it works with certain max functionals for a separation of two sets where one of them is nonconvex. These functionals have the advantage … Read more

The Cost of Decoupling Trade and Transport in the European Entry-Exit Gas Market with Linear Physics Modeling

Liberalized gas markets in Europe are organized as entry-exit regimes so that gas trade and transport are decoupled. The decoupling is achieved via the announcement of technical capacities by the transmission system operator (TSO) at all entry and exit points of the network. These capacities can be booked by gas suppliers and customers in long-term … Read more

On identifying clusters from sum-of-norms clustering computation

Sum-of-norms clustering is a clustering formulation based on convex optimization that automatically induces hierarchy. Multiple algorithms have been proposed to solve the optimization problem: subgradient descent by Hocking et al.\ \cite{hocking}, ADMM and ADA by Chi and Lange\ \cite{Chi}, stochastic incremental algorithm by Panahi et al.\ \cite{Panahi} and semismooth Newton-CG augmented Lagrangian method by Yuan … Read more