Deep Unfolding of a Proximal Interior Point Method for Image Restoration

Variational methods are widely applied to ill-posed inverse problems for they have the ability to embed prior knowledge about the solution. However, the level of performance of these methods significantly depends on a set of parameters, which can be estimated through computationally expensive and time-consuming methods. In contrast, deep learning offers very generic and efficient … Read more

Large-scale Influence Maximization via Maximal Covering Location

Influence maximization aims at identifying a limited set of key individuals in a (social) network which spreads information based on some propagation model and maximizes the number of individuals reached. We show that influence maximization based on the probabilistic independent cascade model can be modeled as a stochastic maximal covering location problem. A reformulation based … Read more

Weighted Thresholding Homotopy Method for Sparsity Constrained Optimization

Weighted or reweighted strategies have not been considered for sparsity constrained optimization. In this paper, we reformulate the sparsity constraint as an equivalent weighted l1-norm constraint in the sparsity constrained optimization problem. To solve the reformulated problem, we investigate the problem in the Lagrange dual framework, and prove that the strong duality property holds. Then … Read more

A note on solving nonlinear optimization problems in variable precision

This short note considers an efficient variant of the trust-region algorithm with dynamic accuracy proposed Carter (1993) and Conn, Gould and Toint (2000) as a tool for very high-performance computing, an area where it is critical to allow multi-precision computations for keeping the energy dissipation under control. Numerical experiments are presented indicating that the use … Read more

Decomposition Methods for Solving Two-Stage Distributionally Robust Optimization Problems

Decomposition methods have been well studied for solving two-stage and multi-stage stochastic programming problems, see [29, 32, 33]. In this paper, we propose an algorithmic framework based on the fundamental ideas of the methods for solving two-stage minimax distributionally robust optimization (DRO) problems where the underlying random variables take a finite number of distinct values. … Read more

Intersection cuts for factorable MINLP

Given a factorable function f, we propose a procedure that constructs a concave underestimor of f that is tight at a given point. These underestimators can be used to generate intersection cuts. A peculiarity of these underestimators is that they do not rely on a bounded domain. We propose a strengthening procedure for the intersection … Read more

Integrated Trajectory-Location-Routing for Rapid Humanitarian Deliveries using Unmanned Aerial Vehicles

Unmanned Aerial Vehicles have the potential to provide an economical solution to the challenges of post-disaster land-based relief operations. Beyond regulatory concerns, technical and particularly airspace integration limitations inhibit their deployment in practice. To address these issues and ensure uninterrupted optimal operations, we present a novel approach consisting of an integrated trajectory-location-routing algorithm that seeks … Read more

Insight into the computation of Steiner minimal trees in Euclidean space of general dimension

We present well known properties related to the topology of Steiner minimal trees and to the geometric position of Steiner points, and investigate their application in the main exact algorithms that have been proposed for the Euclidean Steiner problem. We discuss the difficulty in the application of properties that were very successfully applied to solve … Read more

Bookings in the European Gas Market: Characterisation of Feasibility and Computational Complexity Results

As a consequence of the liberalisation of the European gas market in the last decades, gas trading and transport have been decoupled. At the core of this decoupling are so-called bookings and nominations. Bookings are special capacity right contracts that guarantee that a specified amount of gas can be supplied or withdrawn at certain entry … Read more

Volumetric barrier decomposition algorithms for two-stage stochastic linear semi-infinite programming

In this paper, we study the two-stage stochastic linear semi-infinite programming with recourse to handle uncertainty in data defining (deterministic) linear semi-infinite programming. We develop and analyze volumetric barrier decomposition-based interior point methods for solving this class of optimization problems, and present a complexity analysis of the proposed algorithms. We establish our convergence analysis by … Read more