A competitive genetic algorithm for single row facility layout

The single row facility layout is the NP-Hard problem of arranging facilities with given lengths on a line, so as to minimize the weighted sum of the distances between all pairs of facilities. Owing to the computational complexity of the problem, researchers have developed several heuristics to obtain good quality solutions. In this paper, we … Read more

Solving trajectory optimization problems via nonlinear programming: the brachistochrone case study

This note discusses reformulations the brachistochrone problem suitable for solution via NLP. The availability of solvers and modeling languages such as AMPL makes it tempting to formulate discretized optimization problems and get solutions to the discretized versions of trajectory optimization problems. We use the famous brachistochrone problem to warn that the resulting solutions may be … Read more

Numerical Optimization of Eigenvalues of Hermitian Matrix Functions

The eigenvalues of a Hermitian matrix function that depends on one parameter analytically can be ordered so that each eigenvalue is an analytic function of the parameter. Ordering these analytic eigenvalues from the largest to the smallest yields continuous and piece-wise analytic functions. For multi-variate Hermitian matrix functions that depend on $d$ parameters analytically, the … Read more

Addressing rank degeneracy in constraint-reduced interior-point methods for linear optimization

In earlier work (Tits et al., SIAM J. Optim., 17(1):119–146, 2006; Winternitz et al., COAP, doi=10.1007/s10589-010-9389-4, 2011), the present authors and their collaborators proposed primal-dual interior-point (PDIP) algorithms for linear optimization that, at each iteration, use only a subset of the (dual) inequality constraints in constructing the search direction. For problems with many more constraints … Read more

Beneath the valley of the noncommutative arithmetic-geometric mean inequality: conjectures, case-studies, and consequences

Randomized algorithms that base iteration-level decisions on samples from some pool are ubiquitous in machine learning and optimization. Examples include stochastic gradient descent and randomized coordinate descent. This paper makes progress at theoretically evaluating the difference in performance between sampling with- and without-replacement in such algorithms. Focusing on least means squares optimization, we formulate a … Read more

Sensitivity analysis for the outages of nuclear power plants

Nuclear power plants must be regularly shut down in order to perform refueling and maintenance operations. The scheduling of the outages is the first problem to be solved in electricity production management. It is a hard combinatorial problem for which an exact solving is impossible. Our approach consists in modelling the problem by a two-level … Read more

Asymptotic Analysis of Sample Average Approximation for Stochastic Optimization Problems with Joint Chance Constraints via CVaR/DC Approximations

Conditional Value at Risk (CVaR) has been recently used to approximate a chance constraint. In this paper, we study the convergence of stationary points when sample average approximation (SAA) method is applied to a CVaR approximated joint chance constrained stochastic minimization problem. Specifically, we prove, under some moderate conditions, that optimal solutions and stationary points … Read more

A Parallel Bundle Method for Asynchronous Subspace Optimization in Lagrangian Relaxation

An algorithmic approach is proposed for exploiting parallelization possibilities in large scale optimization models of the following generic type. Objects change their state over time subject to a limited availability of common resources. These are modeled by linear coupling constraints and result in few objects competing for the same resource at each point in time. … Read more

Interior-Point Methods for Nonconvex Nonlinear Programming: Cubic Regularization

In this paper, we present a barrier method for solving nonlinear programming problems. It employs a Levenberg-Marquardt perturbation to the Karush-Kuhn-Tucker (KKT) matrix to handle indefinite Hessians and a line search to obtain sufficient descent at each iteration. We show that the Levenberg-Marquardt perturbation is equivalent to replacing the Newton step by a cubic regularization … Read more

Branch-and-Price Guided Search for Integer Programs with an Application to the Multicommodity Fixed Charge Network Flow Problem

We develop an exact algorithm for integer programs that uses restrictions of the problem to produce high-quality solutions quickly. Column generation is used both for generating these problem restrictions and for producing bounds on the value of the optimal solution. The performance of the algorithm is greatly enhanced by using structure, such as arises in … Read more