A Python/C library for bound-constrained global optimization with continuous GRASP

This paper describes libcgrpp, a GNU-style dynamic shared Python/C library of the continuous greedy randomized adaptive search procedure (C-GRASP) for bound constrained global optimization. C-GRASP is an extension of the GRASP metaheuristic (Feo and Resende, 1989). After a brief introduction to C-GRASP, we show how to download, install, configure, and use the library through an … Read more

Decision Making under Uncertainty when Preference Information is Incomplete

We consider the problem of optimal decision making under uncertainty but assume that the decision maker’s utility function is not completely known. Instead, we consider all the utilities that meet some criteria, such as preferring certain lotteries over certain other lotteries and being risk averse, s-shaped, or prudent. This extends the notion of stochastic dominance. … Read more

An Alternating Direction Method for Total Variation Denoising

We consider the image denoising problem using total variation (TV) regularization. This problem can be computationally challenging to solve due to the non-differentiability and non-linearity of the regularization term. We propose an alternating direction augmented Lagrangian (ADAL) method, based on a new variable splitting approach that results in subproblems that can be solved efficiently and … Read more

Simulation Optimization for the Stochastic Economic Lot Scheduling Problem

We study simulation optimization methods for the stochastic economic lot scheduling problem. In contrast to prior research, we focus on methods that treat this problem as a black box. Based on a large-scale numerical study, we compare approximate dynamic programming with a global search for parameters of simple control policies. We propose two value function … Read more

A Complementarity Partition Theorem for Multifold Conic Systems

Consider a homogeneous multifold convex conic system $$ Ax = 0, \; x\in K_1\times \cdots \times K_r $$ and its alternative system $$ A\transp y \in K_1^*\times \cdots \times K_r^*, $$ where $K_1,\dots, K_r$ are regular closed convex cones. We show that there is canonical partition of the index set $\{1,\dots,r\}$ determined by certain complementarity … Read more

A Polynomial-Time Solution Scheme for Quadratic Stochastic Programs

We consider quadratic stochastic programs with random recourse – a class of problems which is perceived to be computationally demanding. Instead of using mainstream scenario tree-based techniques, we reduce computational complexity by restricting the space of recourse decisions to those linear and quadratic in the observations, thereby obtaining an upper bound on the original problem. … Read more

A proximal point algorithm for sequential feature extraction applications

We propose a proximal point algorithm to solve LAROS problem, that is the problem of finding a “large approximately rank-one submatrix”. This LAROS problem is used to sequentially extract features in data. We also develop a new stopping criterion for the proximal point algorithm, which is based on the duality conditions of \eps-optimal solutions of … Read more

Distributed Basis Pursuit

We propose a distributed algorithm for solving the optimization problem Basis Pursuit (BP). BP finds the least L1-norm solution of the underdetermined linear system Ax = b and is used, for example, in compressed sensing for reconstruction. Our algorithm solves BP on a distributed platform such as a sensor network, and is designed to minimize … Read more

Efficient Serial and Parallel Coordinate Descent Methods for Huge-Scale Truss Topology Design

In this work we propose solving huge-scale instances of the truss topology design problem with coordinate descent methods. We develop four efficient codes: serial and parallel implementations of randomized and greedy rules for the selection of the variable (potential bar) to be updated in the next iteration. Both serial methods enjoy an O(n/k) iteration complexity … Read more

An algorithm for the choice of the regularization parameter in inverse problems in imaging

In this paper we present an iterative algorithm for the solution of regularization problems arising in inverse image processing. The regularization function to be minimized is constituted by two terms, a data fit function and a regularization function, weighted by a regularization parameter. The proposed algorithm solves the minimization problem and estimates the regularization parameter … Read more