On the p-median polytope of a special class of graphs

In this paper we consider a well known class of valid inequalities for the p-median and the uncapacitated facility location polytopes, the odd cycle inequalities. It is known that their separation problem is polynomially solvable. We give a new polynomial separation algorithm based on a reduction from the original graph. Then, we define a nontrivial … Read more

The p-median polytope of restricted Y-graphs

We further study the effect of odd cycle inequalities in the description of the polytopes associated with the p-median and uncapacitated facility location problems. We show that the obvious integer linear programming formulation together with the odd cycle inequalities completely describe these polytopes for the class of restricted Y-graphs. This extends our results for the … Read more

New solution approaches to the general single machine earliness-tardiness problem

This paper addresses the general single-machine earliness-tardiness problem with distinct release dates, due dates, and unit costs. The aim of this research is to obtain an exact nonpreemptive solution in which machine idle time is allowed. In a hybrid approach, we formulate and then solve the problem using dynamic programming (DP) while incorporating techniques from … Read more

Efficiently packing unequal disks in a circle: a computational approach which exploits the continuous and combinatorial structure of the problem

Placing $N$ non-overlapping circles in a smallest container is a well known, widely studied problem that can be easily formulated as a mathematical programming model. Solving this problem is notoriously extremely hard. Recently a public contest has been held for finding putative optimal solutions to a special case in circle packing. The contest saw the … Read more

A robust approach to the chance-constrained knapsack problem

Chance-constrained programming is a relevant model for many concrete problems. However, it is known to be very hard to tackle directly. In this paper, the chance-constrained knapsack problem (CKP) is addressed. Relying on the recent advances in robust optimization, a tractable combinatorial algorithm is proposed to solve CKP. It always provides feasible solutions for CKP. … Read more

Representing the space of linear programs as a Grassmannian

We represent the space of linear programs as the space of projection matrices. Projection matrices of the same dimension and rank comprise a Grassmannian, which has rich geometric and algebraic structures. An ordinary differential equation on the space of projection matrices defines a path for each projection matrix associated with a linear programming instance and … Read more

Benchmark of Some Nonsmooth Optimization Solvers for Computing Nonconvex Proximal Points

The major focus of this work is to compare several methods for computing the proximal point of a nonconvex function via numerical testing. To do this, we introduce two techniques for randomly generating challenging nonconvex test functions, as well as two very specific test functions which should be of future interest to Nonconvex Optimization Benchmarking. … Read more

Numerical Experiments with universal barrier functions for cones of Chebyshev systems

Based on previous explicit computations of universal barrier functions, we describe numerical experiments for solving certain classes of convex optimization problems. The comparison is given of the performance of the classical affine-scaling algorithm with similar algorithm based upon the universal barrier function CitationTo appear in “Computational Optimization and Applications”ArticleDownload View PDF

Spectral Bounds for Sparse PCA: Exact & Greedy Algorithms

Sparse PCA seeks approximate sparse “eigenvectors” whose projections capture the maximal variance of data. As a cardinality-constrained and non-convex optimization problem, it is NP-hard and yet it is encountered in a wide range of applied fields, from bio-informatics to finance. Recent progress has focused mainly on continuous approximation and convex relaxation of the hard cardinality … Read more

Algebraic Tail Decay of Condition Numbers for Random Conic Systems under a General Family of Input Distributions

We consider the conic feasibility problem associated with linear homogeneous systems of inequalities. The complexity of iterative algorithms for solving this problem depends on a condition number. When studying the typical behaviour of algorithms under stochastic input one is therefore naturally led to investigate the fatness of the distribution tails of the random condition number … Read more