A user manual for cuHALLaR: A GPU accelerated low-rank semidefinite programming Solver

We present a Julia-based interface to the precompiled HALLaR and cuHALLaR binaries for large-scale semidefinite programs (SDPs). Both solvers are established as fast and numerically stable, and accept problem data in formats compatible with SDPA and a new enhanced data format taking advantage of Hybrid Sparse Low-Rank (HSLR) structure. The interface allows users to load … Read more

On the boundedness of multipliers in augmented Lagrangian methods for mathematical programs with complementarity constraints

In this paper, we present a theoretical analysis of augmented Lagrangian (AL) methods applied to mathematical programs with complementarity constraints (MPCCs). Our focus is on a variant that reformulates the complementarity constraints using slack variables, where these constraints are handled directly in the subproblems rather than being penalized. We introduce specialized constraint qualifications (CQs) of … Read more

cuHALLaR: A GPU accelerated low-rank augmented Lagrangian method for large-scale semidefinite programming

This paper introduces cuHALLaR, a GPU-accelerated implementation of the HALLaR method proposed in Monteiro et al. 2024 for solving large-scale semidefinite programming (SDP) problems. We demonstrate how our Julia-based implementation efficiently uses GPU parallelism through optimization of simple, but key, operations, including linear maps, adjoints, and gradient evaluations. Extensive numerical experiments across three problem classes—maximum … Read more

An Augmented Lagrangian Approach to Bi-Level Optimization via an Equilibrium Constrained Problem

Optimization problems involving equilibrium constraints capture diverse optimization settings such as bi-level optimization, min-max problems and games, and the minimization over non-linear constraints. This paper introduces an Augmented Lagrangian approach with Hessian-vector product approximation to address an equilibrium constrained nonconvex nonsmooth optimization problem. The underlying model in particular captures various settings of bi-level optimization problems, … Read more

Using Filter Methods to Guide Convergence for ADMM, with Applications to Nonnegative Matrix Factorization Problems

Nonconvex, nonlinear cost functions arise naturally in physical inverse problems and machine learning. The alternating direction method of multipliers (ADMM) has seen extensive use in these applications, despite exhibiting uncertain convergence behavior in many practical nonconvex settings, and struggling with general nonlinear constraints. In contrast, filter methods have proved effective in enforcing convergence for sequential … Read more

A low-rank augmented Lagrangian method for large-scale semidefinite programming based on a hybrid convex-nonconvex approach

This paper introduces HALLaR, a new first-order method for solving large-scale semidefinite programs (SDPs) with bounded domain. HALLaR is an inexact augmented Lagrangian (AL) method where the AL subproblems are solved by a novel hybrid low-rank (HLR) method. The recipe behind HLR is based on two key ingredients: 1) an adaptive inexact proximal point method … Read more

On the paper “Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem”

In the paper [Torrealba, E.M.R. et al. Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem. EJOR, 299(1) 46–59, 2021] an augmented Lagrangian algorithm was proposed for resource allocation problems with the intriguing characteristic that instead of solving the box-constrained augmented Lagrangian subproblem, they propose projecting the solution of the unconstrained subproblem onto … Read more

Inexact Penalty Decomposition Methods for Optimization Problems with Geometric Constraints

This paper provides a theoretical and numerical investigation of a penalty decomposition scheme for the solution of optimization problems with geometric constraints. In particular, we consider some  situations where parts of the constraints are nonconvex and complicated, like cardinality constraints, disjunctive programs, or matrix problems involving rank constraints. By a variable duplication and  decomposition strategy, … Read more

A primal-dual majorization-minimization method for large-scale linear programs

We present a primal-dual majorization-minimization method for solving large-scale linear programs. A smooth barrier augmented Lagrangian (SBAL) function with strict convexity for the dual linear program is derived. The majorization-minimization approach is naturally introduced to develop the smoothness and convexity of the SBAL function. Our method only depends on a factorization of the constant matrix … Read more