A First-Order Augmented Lagrangian Method for Compressed Sensing

We propose a First-order Augmented Lagrangian algorithm (FAL) for solving the basis pursuit problem. FAL computes a solution to this problem by inexactly solving a sequence of L1-regularized least squares sub-problems. These sub-problems are solved using an infinite memory proximal gradient algorithm wherein each update reduces to “shrinkage” or constrained “shrinkage”. We show that FAL … Read more

Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization

The nuclear norm is widely used to induce low-rank solutions for many optimization problems with matrix variables. Recently, it has been shown that the augmented Lagrangian method (ALM) and the alternating direction method (ADM) are very efficient for many convex programming problems arising from various applications, provided that the resulting subproblems are sufficiently simple to … Read more

Recovering low-rank and sparse components of matrices from incomplete and noisy observations

Many applications arising in a variety of fields can be well illustrated by the task of recovering the low-rank and sparse components of a given matrix. Recently, it is discovered that this NP-hard task can be well accomplished, both theoretically and numerically, via heuristically solving a convex relaxation problem where the widely-acknowledged nuclear norm and … Read more

Fast Alternating Linearization Methods for Minimizing the Sum of Two Convex Functions

We present in this paper first-order alternating linearization algorithms based on an alternating direction augmented Lagrangian approach for minimizing the sum of two convex functions. Our basic methods require at most $O(1/\epsilon)$ iterations to obtain an $\epsilon$-optimal solution, while our accelerated (i.e., fast) versions of them require at most $O(1/\sqrt{\epsilon})$ iterations, with little change in … Read more

Alternating Direction Augmented Lagrangian Methods for semidefinite programming

We present an alternating direction method based on an augmented Lagrangian framework for solving semidefinite programming (SDP) problems in standard form. At each iteration, the algorithm, also known as a two-splitting scheme, minimizes the dual augmented Lagrangian function sequentially with respect to the Lagrange multipliers corresponding to the linear constraints, then the dual slack variables … Read more

An Augmented Lagrangian Approach for Sparse Principal Component Analysis

Principal component analysis (PCA) is a widely used technique for data analysis and dimension reduction with numerous applications in science and engineering. However, the standard PCA suffers from the fact that the principal components (PCs) are usually linear combinations of all the original variables, and it is thus often difficult to interpret the PCs. To … Read more

Iteration-complexity of first-order augmented Lagrangian methods for convex programming

This paper considers a special class of convex programming (CP) problems whose feasible regions consist of a simple compact convex set intersected with an affine manifold. We present first-order methods for this class of problems based on an inexact version of the classical augmented Lagrangian (AL) approach, where the subproblems are approximately solved by means … Read more

Proximal Methods for Nonlinear Programming: Double Regularization and Inexact Subproblems

This paper describes the first phase of a project attempting to construct an efficient general-purpose nonlinear optimizer using an augmented Lagrangian outer loop with a relative error criterion, and an inner loop employing a state-of-the art conjugate gradient solver. The outer loop can also employ double regularized proximal kernels, a fairly recent theoretical development that … Read more

A Primal-Dual Augmented Lagrangian

Nonlinearly constrained optimization problems can be solved by minimizing a sequence of simpler unconstrained or linearly constrained subproblems. In this paper, we discuss the formulation of subproblems in which the objective is a primal-dual generalization of the Hestenes-Powell augmented Lagrangian function. This generalization has the crucial feature that it is minimized with respect to both … Read more

A Newton-CG Augmented Lagrangian Method for Semidefinite Programming

We consider a Newton-CG augmented Lagrangian method for solving semidefinite programming (SDP) problems from the perspective of approximate semismooth Newton methods. In order to analyze the rate of convergence of our proposed method, we characterize the Lipschitz continuity of the corresponding solution mapping at the origin. For the inner problems, we show that the positive … Read more