On the best achievable quality of limit points of augmented Lagrangian schemes

The optimization literature is vast in papers dealing with improvements on the global convergence of augmented Lagrangian schemes. Usually, the results are based on weak constraint qualifications, or, more recently, on sequential optimality conditions obtained via penalization techniques. In this paper we propose a somewhat different approach, in the sense that the algorithm itself is … Read more

Exact Penalty Function for L21 Norm Minimization over the Stiefel Manifold

L21 norm minimization with orthogonality constraints, feasible region of which is called Stiefel manifold, has wide applications in statistics and data science. The state-of-the-art approaches adopt proximal gradient technique on either Stiefel manifold or its tangent spaces. The consequent subproblem does not have closed-form solution and hence requires an iterative procedure to solve which is … Read more

On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming

Jordan Algebras are an important tool for dealing with semidefinite programming and optimization over symmetric cones in general. In this paper, a judicious use of Jordan Algebras in the context of sequential optimality conditions is done in order to generalize the global convergence theory of an Augmented Lagrangian method for nonlinear semidefinite programming. An approximate … Read more

On the convergence of augmented Lagrangian strategies for nonlinear programming

Augmented Lagrangian algorithms are very popular and successful methods for solving constrained optimization problems. Recently, the global convergence analysis of these methods have been dramatically improved by using the notion of the sequential optimality conditions. Such conditions are optimality conditions independently of the fulfilment of any constraint qualifications and provide theoretical tools to justify stopping … Read more

A Class of Smooth Exact Penalty Function Methods for Optimization Problems with Orthogonality Constraints

Updating the augmented Lagrangian multiplier by closed-form expression yields efficient first-order infeasible approach for optimization problems with orthogonality constraints. Hence, parallelization becomes tractable in solving this type of problems. Inspired by this closed-form updating scheme, we propose an exact penalty function model with compact convex constraints (PenC). We show that PenC can act as an … Read more

A parallel splitting ALM-based algorithm for separable convex programming

The augmented Lagrangian method (ALM) provides a benchmark for tackling the canonical convex minimization problem with linear constraints. We consider a special case where the objective function is the sum of $m$ individual subfunctions without coupled variables. The recent study reveals that the direct extension of ALM for separable convex programming problems is not necessarily … Read more

Optimality conditions for nonlinear second-order cone programming and symmetric cone programming

Nonlinear symmetric cone programming (NSCP) generalizes important optimization problems such as nonlinear programming, nonlinear semidefinite programming and nonlinear second-order cone programming (NSOCP). In this work, we present two new optimality conditions for NSCP without constraint qualifications, which implies the Karush-Kuhn-Tucker conditions under a condition weaker than Robinson’s constraint qualification. In addition, we show the relationship … Read more

A sparse semismooth Newton based augmented Lagrangian method for large-scale support vector machines

Support vector machines (SVMs) are successful modeling and prediction tools with a variety of applications. Previous work has demonstrated the superiority of the SVMs in dealing with the high dimensional, low sample size problems. However, the numerical difficulties of the SVMs will become severe with the increase of the sample size. Although there exist many … Read more

A New Sequential Updating Scheme of the Lagrange Multiplier for Multi-Block Linearly Constrained Separable Convex Optimization with Relaxed Step Sizes

In various applications such as signal/image processing, data mining, statistical learning and etc., the multi-block linearly constrained separable convex optimization is frequently used, where the objective function is the sum of multiple individual convex functions, and the major constraints are linear. A classical method for solving such kind of optimization problem could be the alternating … Read more

Complexity and performance of an Augmented Lagrangian algorithm

Algencan is a well established safeguarded Augmented Lagrangian algorithm introduced in [R. Andreani, E. G. Birgin, J. M. Martínez and M. L. Schuverdt, On Augmented Lagrangian methods with general lower-level constraints, SIAM Journal on Optimization 18, pp. 1286-1309, 2008]. Complexity results that report its worst-case behavior in terms of iterations and evaluations of functions and … Read more