A Shifted Primal-Dual Interior Method for Nonlinear Optimization

Interior methods provide an effective approach for the treatment of inequality constraints in nonlinearly constrained optimization. A new primal-dual interior method is proposed based on minimizing a sequence of shifted primal-dual penalty-barrier functions. Certain global convergence properties are established. In particular, it is shown that every limit point is either an infeasible stationary point, or … Read more

Optimality Conditions and Constraint Qualifications for Generalized Nash Equilibrium Problems and their Practical Implications

Generalized Nash Equilibrium Problems (GNEPs) are a generalization of the classic Nash Equilibrium Problems (NEPs), where each player’s strategy set depends on the choices of the other players. In this work we study constraint qualifications and optimality conditions tailored for GNEPs and we discuss their relations and implications for global convergence of algorithms. Surprisingly, differently … Read more

A sequential optimality condition related to the quasinormality constraint qualification and its algorithmic consequences

In the present paper, we prove that the augmented Lagrangian method converges to KKT points under the quasinormality constraint qualification, which is associated with the external penalty theory. For this purpose, a new sequential optimality condition for smooth constrained optimization, called PAKKT, is defined. The new condition takes into account the sign of the dual … Read more

A Primal-Dual Augmented Lagrangian Penalty-Interior-Point Filter Line Search Algorithm

Interior-point methods have been shown to be very efficient for large-scale nonlinear programming. The combination with penalty methods increases their robustness due to the regularization of the constraints caused by the penalty term. In this paper a primal-dual penalty-interior-point algorithm is proposed, that is based on an augmented Lagrangian approach with an l2-exact penalty function. … Read more

Convergence properties of a second order augmented Lagrangian method for mathematical programs with complementarity constraints

Mathematical Programs with Complementarity Constraints (MPCCs) are difficult optimization problems that do not satisfy the majority of the usual constraint qualifications (CQs) for standard nonlinear optimization. Despite this fact, classical methods behaves well when applied to MPCCs. Recently, Izmailov, Solodov and Uskov proved that first order augmented Lagrangian methods, under a natural adaption of the … Read more

On Relaxation of Some Customized Proximal Point Algorithms for Convex Minimization: From Variational Inequality Perspective

The proximal point algorithm (PPA) is a fundamental method for convex programming. When PPA applied to solve linearly constrained convex problems, we may prefer to choose an appropriate metric matrix to define the proximal regularization, so that the computational burden of the resulted PPA can be reduced, and in most cases, even admit closed form … Read more

Optimality conditions for problems over symmetric cones and a simple augmented Lagrangian method

In this work we are interested in nonlinear symmetric cone problems (NSCPs), which contain as special cases nonlinear semidefinite programming, nonlinear second order cone programming and the classical nonlinear programming problems. We explore the possibility of reformulating NSCPs as common nonlinear programs (NLPs), with the aid of squared slack variables. Through this connection, we show … Read more

Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points

Augmented Lagrangian methods with convergence to second-order stationary points in which any constraint can be penalized or carried out to the subproblems are considered in this work. The resolution of each subproblem can be done by any numerical algorithm able to return approximate second-order stationary points. The developed global convergence theory is stronger than the … Read more

Global Convergence of ADMM in Nonconvex Nonsmooth Optimization

In this paper, we analyze the convergence of the alternating direction method of multipliers (ADMM) for minimizing a nonconvex and possibly nonsmooth objective function, $\phi(x_0,\ldots,x_p,y)$, subject to coupled linear equality constraints. Our ADMM updates each of the primal variables $x_0,\ldots,x_p,y$, followed by updating the dual variable. We separate the variable $y$ from $x_i$’s as it … Read more

A parallelizable augmented Lagrangian method applied to large-scale non-convex-constrained optimization problems

We contribute improvements to a Lagrangian dual solution approach applied to large-scale optimization problems whose objective functions are convex, continuously differentiable and possibly nonlinear, while the non-relaxed constraint set is compact but not necessarily convex. Such problems arise, for example, in the split-variable deterministic reformulation of stochastic mixed-integer optimization problems. The dual solution approach needs … Read more