A Branch-and-Price-and-Cut Algorithm for Discrete Network Design Problems Under Traffic Equilibrium

This study addresses discrete network design problems under traffic equilibrium conditions or DNDPs. Given a network and a budget, DNDPs aim to model all-or-nothing decisions such as link addition to minimize network congestion effects. Congestion is measured using traffic equilibrium theory where link travel times are modeled as convex flow-dependent functions and where users make … Read more

Unboundedness in Bilevel Optimization

Bilevel optimization has garnered growing interest over the past decade. However, little attention has been paid to detecting and dealing with unboundedness in these problems, with most research assuming a bounded high-point relaxation. In this paper, we address unboundedness in bilevel optimization by studying its computational complexity and developing algorithmic approaches to detect it. We … Read more

Single-Timescale Multi-Sequence Stochastic Approximation Without Fixed Point Smoothness: Theories and Applications

\(\) Stochastic approximation (SA) that involves multiple coupled sequences, known as multiple-sequence SA (MSSA), finds diverse applications in the fields of signal processing and machine learning. However, existing theoretical understandings of MSSA are limited: the multi-timescale analysis implies a slow convergence rate, whereas the single-timescale analysis relies on a stringent fixed point smoothness assumption. This … Read more

Tuning-Free Bilevel Optimization: New Algorithms and Convergence Analysis

\(\) Bilevel optimization has recently attracted considerable attention due to its abundant applications in machine learning problems. However, existing methods rely on prior knowledge of problem parameters to determine stepsizes, resulting in significant effort in tuning stepsizes when these parameters are unknown. In this paper, we propose two novel tuning-free algorithms, D-TFBO and S-TFBO. D-TFBO … Read more

Interdiction of minimum spanning trees and other matroid bases

\(\) In the minimum spanning tree (MST) interdiction problem, we are given a graph \(G=(V,E)\) with edge weights, and want to find some \(X\subseteq E\) satisfying a knapsack constraint such that the MST weight in \((V,E\setminus X)\) is maximized. Since MSTs of \(G\) are the minimum weight bases in the graphic matroid of \(G\), this … Read more

Heuristic Methods for Γ-Robust Mixed-Integer Linear Bilevel Problems

Due to their nested structure, bilevel problems are intrinsically hard to solve–even if all variables are continuous and all parameters of the problem are exactly known. In this paper, we study mixed-integer linear bilevel problems with lower-level objective uncertainty, which we address using the notion of Γ-robustness. To tackle the Γ-robust counterpart of the bilevel … Read more

Using Disjunctive Cuts in a Branch-and-Cut Method to Solve Convex Integer Nonlinear Bilevel Problems

We present a branch-and-cut method for solving convex integer nonlinear bilevel problems, i.e., bilevel models with nonlinear but convex objective functions and constraints in both the upper and the lower level. To this end, we generalize the idea of using disjunctive cuts to cut off integer-feasible but bilevel-infeasible points. These cuts can be obtained by … Read more

Neur2BiLO: Neural Bilevel Optimization

Bilevel optimization deals with nested problems in which a leader takes the first decision to minimize their objective function while accounting for a follower best-response reaction. Constrained bilevel problems with integer variables are particularly notorious for their hardness.  While exact solvers have been proposed for mixed-integer~linear bilevel optimization, they tend to scale poorly with problem … Read more

On Coupling Constraints in Linear Bilevel Optimization

It is well-known that coupling constraints in linear bilevel optimization can lead to disconnected feasible sets, which is not possible without coupling constraints. However, there is no difference between linear bilevel problems with and without coupling constraints w.r.t. their complexity-theoretical hardness. In this note, we prove that, although there is a clear difference between these … Read more

Solution methods for partial inverse combinatorial optimization problems in which weights can only be increased

Partial inverse combinatorial optimization problems are bilevel optimization problems in which the leader aims to incentivize the follower to include a given set of elements in the solution of their combinatorial problem. If the set of required elements defines a complete follower solution, the inverse combinatorial problem is solvable in polynomial time as soon as … Read more