Chambolle-Pock and Tseng’s methods: relationship and extension to the bilevel optimization

In the first part of the paper we focus on two problems: (a) regularized least squares and (b) nonsmooth minimization over an affine subspace. For these problems we establish the connection between the primal-dual method of Chambolle-Pock and Tseng’s proximal gradient method. For problem (a) it allows us to derive a nonergodic $O(1/k^2)$ convergence rate … Read more

Optimizing power generation in the presence of micro-grids

In this paper we consider energy management optimization problems in a future wherein an interaction with micro-grids has to be accounted for. We will model this interaction through a set of contracts between the generation companies owning centralized assets and the micro-grids. We will formulate a general stylized model that can, in principle, account for … Read more

A Branch-and-Cut Algorithm for Mixed Integer Bilevel Linear Optimization Problems and Its Implementation

In this paper, we describe an algorithmic framework for solving mixed integer bilevel linear optimization problems (MIBLPs) by a generalized branch-and-cut approach. The framework presented merges features from existing algorithms (for both traditional mixed integer linear optimization and MIBLPs) with new techniques to produce a flexible and robust framework capable of solving a wide range … Read more

Novel formulations for general and security Stackelberg games

In this paper we analyze general Stackelberg games (SGs) and Stackelberg security games (SSGs). SGs are hierarchical adversarial games where players select actions or strategies to optimize their payoffs in a sequential manner. SSGs are a type of SGs that arise in security applications, where the strategies of the player that acts first consist in … Read more

Decision Rule Bounds for Two-Stage Stochastic Bilevel Programs

We study stochastic bilevel programs where the leader chooses a binary here-and-now decision and the follower responds with a continuous wait-and-see-decision. Using modern decision rule approximations, we construct lower bounds on an optimistic version and upper bounds on a pessimistic version of the leader’s problem. Both bounding problems are equivalent to explicit mixed-integer linear programs … Read more

Constructing New Weighted l1-Algorithms for the Sparsest Points of Polyhedral Sets

The l0-minimization problem that seeks the sparsest point of a polyhedral set is a longstanding challenging problem in the fields of signal and image processing, numerical linear algebra and mathematical optimization. The weighted l1-method is one of the most plausible methods for solving this problem. In this paper, we develop a new weighted l1-method through … Read more

A Non-metric Bilevel Location Problem

We address a bilevel location problem where a leader first decides which facilities to open and their access prices; then, customers make individual decisions minimizing individual costs. In this note we prove that, when access costs do not fulfill metric properties, the problem is NP-hard even if facilities can be opened at no fixed cost. … Read more

A Practical Scheme to Compute Pessimistic Bilevel Optimization Problem

In this paper, we present a new computation scheme for pessimistic bilevel optimization problem, which so far does not have any computational methods generally applicable yet. We first develop a tight relaxation and then design a simple scheme to ensure a feasible and optimal solution. Then, we discuss using this scheme to compute linear pessimistic … Read more

Solving ill-posed bilevel programs

This paper deals with ill-posed bilevel programs, i.e., problems admitting multiple lower-level solutions for some upper-level parameters. Many publications have been devoted to the standard optimistic case of this problem, where the difficulty is essentially moved from the objective function to the feasible set. This new problem is simpler but there is no guaranty to … Read more

Semivectorial Bilevel Optimization on Riemannian Manifolds

In this paper we deal with the semivectorial bilevel problem in the Riemannian setting. The upper level is a scalar optimization problem to be solved by the leader, and the lower level is a multiobjective optimization problem to be solved by several followers acting in a cooperative way inside the greatest coalition and choosing among … Read more