Unit commitment with valve-point loading effect

Valve-point loading affects the input-output characteristics of generating units, bringing the fuel costs nonlinear and nonsmooth. This has been considered in the solution of load dispatch problems, but not in the planning phase of unit commitment. This paper presents a mathematical optimization model for the thermal unit commitment problem considering valve-point loading. The formulation is … Read more

Surrogate upper bound sets for bi-objective bi-dimensional binary knapsack problems

The paper deals with the definition and the computation of surrogate upper bound sets for the bi-objective bi-dimensional binary knapsack problem. It introduces the Optimal Convex Surrogate Upper Bound set, which is the tightest possible definition based on the convex relaxation of the surrogate relaxation. Two exact algorithms are proposed: an enumerative algorithm and its … Read more

Mathematical Programming techniques in Water Network Optimization

In this article we survey mathematical programming approaches to problems in the field of water network optimization. Predominant in the literature are two different, but related problem classes. One can be described by the notion of network design, while the other is more aptly termed by network operation. The basic underlying model in both cases … Read more

Nonmonotone GRASP

A Greedy Randomized Adaptive Search Procedure (GRASP) is an iterative multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications … Read more

A Comprehensive Analysis of Polyhedral Lift-and-Project Methods

We consider lift-and-project methods for combinatorial optimization problems and focus mostly on those lift-and-project methods which generate polyhedral relaxations of the convex hull of integer solutions. We introduce many new variants of Sherali–Adams and Bienstock–Zuckerberg operators. These new operators fill the spectrum of polyhedral lift-and-project operators in a way which makes all of them more … Read more

A Practical Iterative Algorithm for the Art Gallery Problem using Integer Linear Programming

In the last few decades, the search for exact algorithms for known NP-hard geometric problems has intensified. Many of these solutions make use of Integer Linear Programming (ILP) modeling and rely on state of the art solvers, to be able to find optimal solutions for large instances in a matter of minutes. In this work, … Read more

PEBBL: An Object-Oriented Framework for Scalable Parallel Branch and Bound

PEBBL is a C++ class library implementing the underlying operations needed to support a wide variety of branch-and-bound algorithms in a message-passing parallel computing environment. Deriving application-speci c classes from PEBBL, one may create parallel branch-and-bound applications through a process focused on the unique aspects of the application, while relying on PEBBL for generic aspects of … Read more

Robust combinatorial optimization with cost uncertainty

We present in this paper a new model for robust combinatorial optimization with cost uncertainty that generalizes the classical budgeted uncertainty set. We suppose here that the budget of uncertainty is given by a function of the problem variables, yielding an uncertainty multifunction. The new model is less conservative than the classical model and approximates … Read more

Multidirectional Physarum Solver: an Innovative Bio-inspired Algorithm for Optimal Discrete Decision Making

This paper introduces a new bio-inspired algorithm for optimal discrete decision making, able to incrementally grow and explore decision graphs in multiple directions. The heuristic draws inspiration from the idea that building decision sequences from multiple directions and then combining the sequences is an optimal choice if compared with a unidirectional approach. The behaviour of … Read more

Biased and unbiased random-key genetic algorithms: An experimental analysis

We study the runtime performance of three types of random-key genetic algorithms: the unbiased algorithm of Bean (1994); the biased algorithm of Gonçalves and Resende (2011); and a greedy version of Bean’s algorithm on 12 instances from four types of covering problems: general-cost set covering, Steiner triple covering, general-cost set K-covering, and unit-cost covering by … Read more