Homogeneous algorithms for monotone complementarity problems over symmetric cones

In \cite{aYOSHISE06}, the author proposed a homogeneous model for standard monotone nonlinear complementarity problems over symmetric cones and show that the following properties hold: (a) There is a path that is bounded and has a trivial starting point without any regularity assumption concerning the existence of feasible or strictly feasible solutions. (b) Any accumulation point … Read more

An Information Geometric Approach to Polynomial-time Interior-point Algorithms: Complexity Bound via Curvature Integral

In this paper, we study polynomial-time interior-point algorithms in view of information geometry. Information geometry is a differential geometric framework which has been successfully applied to statistics, learning theory, signal processing etc. We consider information geometric structure for conic linear programs introduced by self-concordant barrier functions, and develop a precise iteration-complexity estimate of the polynomial-time … Read more

A simple exact separation algorithm for 2-matching inequalities.

In this work we present an exact separation algorithm for the so called co-circuit inequalities, otherwise known as parity or 2-matching inequalities. The algorithm is quite simple since it operates on the tree of min-cuts of the support graph of the solution to separate, relative to an ad hoc capacity vector. The order of our … Read more

Adaptive cubic overestimation methods for unconstrained optimization

An Adaptive Cubic Overestimation (ACO) algorithm for unconstrained optimization is proposed, generalizing at the same time an unpublished method due to Griewank (Technical Report NA/12, 1981, DAMTP, Univ. of Cambridge), an algorithm by Nesterov & Polyak (Math. Programming 108(1), 2006, pp 177-205) and a proposal by Weiser, Deuflhard & Erdmann (Optim. Methods Softw. 22(3), 2007, … Read more

Stochastic Approximation approach to Stochastic Programming

In this paper we consider optimization problems where the objective function is given in a form of the expectation. A basic difficulty of solving such stochastic optimization problems is that the involved multidimensional integrals (expectations) cannot be computed with high accuracy. The aim of this paper is to compare two computational approaches based on Monte … Read more

Gradient methods for minimizing composite objective function

In this paper we analyze several new methods for solving optimization problems with the objective function formed as a sum of two convex terms: one is smooth and given by a black-box oracle, and another is general but simple and its structure is known. Despite to the bad properties of the sum, such problems, both … Read more

Gradient methods for minimizing composite objective function

In this paper we analyze several new methods for solving optimization problems with the objective function formed as a sum of two convex terms: one is smooth and given by a black-box oracle, and another is general but simple and its structure is known. Despite to the bad properties of the sum, such problems, both … Read more

The Mixing-MIR Set with Divisible Capacities

We study the set $S = \{(x, y) \in \Re_{+} \times Z^{n}: x + B_{j} y_{j} \geq b_{j}, j = 1, \ldots, n\}$, where $B_{j}, b_{j} \in \Re_{+} – \{0\}$, $j = 1, \ldots, n$, and $B_{1} | \cdots | B_{n}$. The set $S$ generalizes the mixed-integer rounding (MIR) set of Nemhauser and Wolsey and … Read more

The complexity of optimizing over a simplex, hypercube or sphere: a short survey

We consider the computational complexity of optimizing various classes of continuous functions over a simplex, hypercube or sphere. These relatively simple optimization problems have many applications. We review known approximation results as well as negative (inapproximability) results from the recent literature. CitationCentER Discussion paper 2006-85 Tilburg University THe NetherlandsArticleDownload View PDF

On complexity of Shmoys – Swamy class of two-stage linear stochastic programming problems

We consider a class of two-stage linear stochastic programming problems, introduced by Shmoys and Swamy (2004), motivated by a relaxation of a stochastic set cover problem. We show that the sample size required to solve this problem by the sample average approximation (SAA) method with a relative accuracy $\kappa>0$ and confidence $1-\alpha$ is polynomial in … Read more