Effective Solution Algorithms for Bulk-Robust Optimization Problems

Bulk-robust optimization is a recent paradigm for addressing problems in which the structure of a system is affected by uncertainty. It considers the case in which a finite and discrete set of possible failure scenarios is known in advance, and the decision maker aims to activate a subset of available resources of minimum cost so … Read more

Extending the reflect flow formulation to variable-sized one-dimensional cutting and skiving stock problems

Flow formulations have been widely studied for the one-dimensional cutting stock problem and several of its extensions. Among these, the so-called reflect model has shown the best empirical performance when solved directly with a general-purpose integer linear programming solver due to its reduced number of variables and constraints. However, existing adaptations of reflect for the … Read more

Models and Algorithms for the Weighted Safe Set Problem

Given a connected graph G = (V, E), a Safe Set S is a subset of the vertex set V such that the cardinality of each connected component in the subgraph induced by V \ S does not exceed the cardinality of any neighbor connected component in the subgraph induced by S. When the vertices … Read more

Adjustable robust optimization with objective uncertainty

In this work, we study optimization problems where some cost parameters are not known at decision time and the decision flow is modeled as a two-stage process within a robust optimization setting. We address general problems in which all constraints (including those linking the first and the second stages) are defined by convex functions and … Read more

A new branch-and-filter exact algorithm for binary constraint satisfaction problems

A binary constraint satisfaction problem (BCSP) consist in determining an assignment of values to variables which is compatible with a set of constraints. The problem is called binary because the constraints involve only pairs of variables. The BCSP is a cornerstone problem in Constraint Programming (CP), appearing in a very wide range of real-world applications. … Read more

Integer Optimization with Penalized Fractional Values: The Knapsack Case

We consider integer optimization problems where variables can potentially take fractional values, but this occurrence is penalized in the objective function. This general situation has relevant examples in scheduling (preemption), routing (split delivery), cutting and telecommunications, just to mention a few. However, the general case in which variables integrality can be relaxed at cost of … Read more

Exact Approaches for the Knapsack Problem with Setups

We consider a generalization of the knapsack problem in which items are partitioned into classes, each characterized by a fixed cost and capacity. We study three alternative Integer Linear Programming formulations. For each formulation, we design an efficient algorithm to compute the linear programming relaxation (one of which is based on Column Generation techniques). We … Read more

Minimization and Maximization Versions of the Quadratic Traveling Salesman Problem

The traveling salesman problem (TSP) asks for a shortest tour through all vertices of a graph with respect to the weights of the edges. The symmetric quadratic traveling salesman problem (SQTSP) associates a weight with every three vertices traversed in succession. If these weights correspond to the turning angles of the tour, we speak of … Read more

Solving Vertex Coloring Problems as Maximum Weight Stable Set Problems

In Vertex Coloring Problems, one is required to assign a color to each vertex of an undirected graph in such a way that adjacent vertices receive different colors, and the objective is to minimize the cost of the used colors. In this work we solve four different coloring problems formulated as Maximum Weight Stable Set … Read more