A fresh CP look at mixed-binary QPs: New formulations and relaxations

Triggered by Burer’s seminal characterization from 2009, many copositive (CP) reformulations of mixed-binary QPs have been discussed by now. Most of them can be used as proper relaxations, if the intractable co(mpletely )positive cones are replaced by tractable approximations. While the widely used approximation hierarchies have the disadvantage to use positive-semidefinite (psd) matrices of orders … Read more

Facial reduction heuristics and the motivational example of mixed-integer conic optimization

Facial reduction heuristics are developed in the interest of added performance and reliability in methods for mixed-integer conic optimization. Specifically, the process of branch-and-bound is shown to spawn subproblems for which the conic relaxations are difficult to solve, and the objective bounds of linear relaxations are arbitrarily weak. While facial reduction algorithms already exist to … Read more

A relaxed-certificate facial reduction algorithm based on subspace intersection

A “facial reduction”-like regularization algorithm is established for conic optimization problems by relaxing requirements on the reduction certificates. It requires only a linear number of reduction certificates from a constant time-solvable auxiliary problem, but is challenged by representational issues of the exposed reductions. A condition for representability is presented, analyzed for Cartesian product cones, and … Read more

The Lyapunov rank of an improper cone

Let K be a closed convex cone with dual K^* in a finite-dimensional real inner-product space V. The complementarity set of K is C(K) = { (x, s) in K × K^* | = 0 }. We say that a linear transformation L : V -> V is Lyapunov-like on K if = 0 for all (x, … Read more

Solving conic optimization problems via self-dual embedding and facial reduction: a unified approach

We establish connections between the facial reduction algorithm of Borwein and Wolkowicz and the self-dual homogeneous model of Goldman and Tucker when applied to conic optimization problems. Specifically, we show the self-dual homogeneous model returns facial reduction certificates when it fails to return a primal-dual optimal solution or a certificate of infeasibility. Using this observation, … Read more

Linear conic formulations for two-party correlations and values of nonlocal games

In this work we study the sets of two-party correlations generated from a Bell scenario involving two spatially separated systems with respect to various physical models. We show that the sets of classical, quantum, no-signaling and unrestricted correlations can be expressed as projections of affine sections of appropriate convex cones. As a by-product, we identify … Read more

Regularization vs. Relaxation: A convexification perspective of statistical variable selection

Variable selection is a fundamental task in statistical data analysis. Sparsity-inducing regularization methods are a popular class of methods that simultaneously perform variable selection and model estimation. The central problem is a quadratic optimization problem with an $\ell_0$-norm penalty. Exactly enforcing the $\ell_0$-norm penalty is computationally intractable for larger scale problems, so different sparsity-inducing penalty … Read more

A Framework for Applying Subgradient Methods to Conic Optimization Problems (version 2)

A framework is presented whereby a general convex conic optimization problem is transformed into an equivalent convex optimization problem whose only constraints are linear equations and whose objective function is Lipschitz continuous. Virtually any subgradient method can be applied to solve the equivalent problem. Two methods are analyzed. (In version 2, the development of algorithms … Read more

A Gentle, Geometric Introduction to Copositive Optimization

This paper illustrates the fundamental connection between nonconvex quadratic optimization and copositive optimization—a connection that allows the reformulation of nonconvex quadratic problems as convex ones in a unified way. We intend the paper for readers new to the area, and hence the exposition is largely self-contained. We focus on examples having just a few variables … Read more

Variational Analysis of Circular Cone Programs

This paper conducts variational analysis of circular programs, which form a new class of optimization problems in nonsymmetric conic programming important for optimization theory and its applications. First we derive explicit formulas in terms of the initial problem data to calculate various generalized derivatives/coderivatives of the projection operator associated with the circular cone. Then we … Read more