Trust your data or not – StQP remains StQP: Community Detection via Robust Standard Quadratic Optimization

We consider the Robust Standard Quadratic Optimization Problem (RStQP), in which an uncertain (possibly indefinite) quadratic form is extremized over the standard simplex. Following most approaches, we model the uncertainty sets by ellipsoids, polyhedra, or spectrahedra, more precisely, by intersections of sub-cones of the copositive matrix cone. We show that the copositive relaxation gap of … Read more

Tight-and-cheap conic relaxation for the AC optimal power flow problem

The classical alternating current optimal power flow problem is highly nonconvex and generally hard to solve. Convex relaxations, in particular semidefinite, second-order cone, convex quadratic, and linear relaxations, have recently attracted significant interest. The semidefinite relaxation is the strongest among them and is exact for many cases. However, the computational efficiency for solving large-scale semidefinite … Read more

On Pathological Disjunctions and Redundant Disjunctive Conic Cuts

The development of Disjunctive Conic Cuts (DCCs) for Mixed Integer Second Order Cone Optimization (MISOCO) problems has recently gained significant interest in the optimization community. In this paper, we explore the pathological disjunctions where disjunctive cuts do not tighten the description of the feasible set. We focus on the identification of cases when the generated … Read more

Improved Conic Reformulations for K-means Clustering

In this paper, we show that the popular K-means clustering problem can equivalently be reformulated as a conic program of polynomial size. The arising convex optimization problem is NP-hard, but amenable to a tractable semidefinite programming (SDP) relaxation that is tighter than the current SDP relaxation schemes in the literature. In contrast to the existing … Read more

Infeasibility detection in the alternating direction method of multipliers for convex optimization

The alternating direction method of multipliers is a powerful operator splitting technique for solving structured optimization problems. For convex optimization problems, it is well-known that the algorithm generates iterates that converge to a solution, provided that it exists. If a solution does not exist, then the iterates diverge. Nevertheless, we show that they yield conclusive … Read more

The Many Faces of Degeneracy in Conic Optimization

Slater’s condition — existence of a “strictly feasible solution” — is a common assumption in conic optimization. Without strict feasibility, first-order optimality conditions may be meaningless, the dual problem may yield little information about the primal, and small changes in the data may render the problem infeasible. Hence, failure of strict feasibility can negatively impact … Read more

Warm-start of interior point methods for second order cone optimization via rounding over optimal Jordan frames

Interior point methods (IPM) are the most popular approaches to solve Second Order Cone Optimization (SOCO) problems, due to their theoretical polynomial complexity and practical performance. In this paper, we present a warm-start method for primal-dual IPMs to reduce the number of IPM steps needed to solve SOCO problems that appear in a Branch and … Read more

A fresh CP look at mixed-binary QPs: New formulations and relaxations

Triggered by Burer’s seminal characterization from 2009, many copositive (CP) reformulations of mixed-binary QPs have been discussed by now. Most of them can be used as proper relaxations, if the intractable co(mpletely )positive cones are replaced by tractable approximations. While the widely used approximation hierarchies have the disadvantage to use positive-semidefinite (psd) matrices of orders … Read more

Facial reduction heuristics and the motivational example of mixed-integer conic optimization

Facial reduction heuristics are developed in the interest of added performance and reliability in methods for mixed-integer conic optimization. Specifically, the process of branch-and-bound is shown to spawn subproblems for which the conic relaxations are difficult to solve, and the objective bounds of linear relaxations are arbitrarily weak. While facial reduction algorithms already exist to … Read more

A relaxed-certificate facial reduction algorithm based on subspace intersection

A “facial reduction”-like regularization algorithm is established for conic optimization problems by relaxing requirements on the reduction certificates. It requires only a linear number of reduction certificates from a constant time-solvable auxiliary problem, but is challenged by representational issues of the exposed reductions. A condition for representability is presented, analyzed for Cartesian product cones, and … Read more