Convex Hull Representations for Bounded Products of Variables

It is well known that the convex hull of {(x,y,xy)}, where (x,y) is constrained to lie in a box, is given by the Reformulation-Linearization Technique (RLT) constraints. Belotti et al. (2010) and Miller et al. (2011) showed that if there are additional upper and/or lower bounds on the product z=xy, then the convex hull can … Read more

On convex hulls of epigraphs of QCQPs

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study sufficient conditions for a convex hull result that immediately implies that the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such … Read more

On the tightness of SDP relaxations of QCQPs

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study conditions under which the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such sufficient conditions. Then using this framework, we show … Read more

The Convex Hull Heuristic for Nonlinear 0-1 Programming Problems with Linear Constraints

The Convex Hull Heuristic (CHH) is a heuristic for mixed-integer programming problems with a nonlinear objective function and linear constraints. It is a matheuristic in two ways: it is based on the mathematical programming algorithm called simplicial decomposition, or SD, and at each iteration, one solves a mixed-integer programming problem with a linear objective function … Read more

A Computationally Efficient Algorithm for Computing Convex Hull Prices

Electricity markets worldwide allow participants to bid non-convex production offers. While non-convex offers can more accurately reflect a resource’s capabilities, they create challenges for market clearing processes. For example, system operators may be required to execute side payments to participants whose costs are not covered through energy sales as determined via traditional locational marginal pricing … Read more

Scenario-based cuts for structured two-stage stochastic and distributionally robust p-order conic mixed integer programs

In this paper, we derive (partial) convex hull for deterministic multi-constraint polyhedral conic mixed integer sets with multiple integer variables using conic mixed integer rounding (CMIR) cut-generation procedure of Atamtürk and Narayanan (Math Prog 122:1–20, 2008), thereby extending their result for a simple polyhedral conic mixed integer set with single constraint and one integer variable. … Read more

Strong formulations for quadratic optimization with M-matrices and semi-continuous variables

We study quadratic optimization with semi-continuous variables and an M-matrix, i.e., PSD with non-positive off-diagonal entries. This structure arises in image segmentation, portfolio optimization, as well as a substructure of general quadratic optimization problems. We prove, under mild assumptions, that the minimization problem is solvable in polynomial time by showing its equivalence to a submodular … Read more

Extended formulations for convex hulls of some bilinear functions

We consider the problem of characterizing the convex hull of the graph of a bilinear function $f$ on the $n$-dimensional unit cube $[0,1]^n$. Extended formulations for this convex hull are obtained by taking subsets of the facets of the Boolean Quadric Polytope (BQP). Extending existing results, we propose the systematic study of properties of $f$ … Read more

Facets of a mixed-integer bilinear covering set with bounds on variables

We derive a closed form description of the convex hull of mixed-integer bilinear covering set with bounds on the integer variables. This convex hull description is determined by considering some orthogonal disjunctive sets defined in a certain way. This description does not introduce any new variables, but consists of exponentially many inequalities. An extended formulation … Read more