A branch and cut algorithm for solving the linear and quadratic integer programming problems

This paper first presents an improve cutting plane method for solving the linear programming problems, based on the primal simplex method with the current equivalent facet technique, in which the increment of objection function is allowed as a pivot variable to decide the search step size. We obtain a strong valid inequality from the objective … Read more

Decomposition in Integer Programming

Both cutting plane methods and traditional decomposition methods are procedures that compute a bound on the optimal value of an integer linear program (ILP) by constructing an approximation to the convex hull of feasible solutions. This approximation is obtained by intersecting the polyhedron associated with the continuous relaxation, which has an explicit representation, with an … Read more

An incremental method for solving convex finite minmax problems

We introduce a new approach to minimizing a function defined as the pointwise maximum over finitely many convex real functions (next referred to as the “component functions”), with the aim of working on the basis of “incomplete knowledge” of the objective function. In fact, a descent algorithm is proposed which does not necessarily require at … Read more

Proximal-ACCPM: a versatile oracle based optimization method

Oracle Based Optimization (OBO) conveniently designates an approach to handle a class of convex optimization problems in which the information pertaining to the function to be minimized and/or to the feasible set takes the form of a linear outer approximation revealed by an oracle. We show, through three representative examples, how difficult problems can be … Read more

A semidefinite programming based polyhedral cut and price algorithm for the maxcut problem

We investigate solution of the maximum cut problem using a polyhedral cut and price approach. The dual of the well-known SDP relaxation of maxcut is formulated as a semi-infinite linear programming problem, which is solved within an interior point cutting plane algorithm in a dual setting; this constitutes the pricing (column generation) phase of the … Read more

Cutting plane algorithms for robust conic convex optimization

In the paper we study some well-known cases of nonlinear programming problems, presenting them as instances of Inexact Linear Programming. The class of problems considered contains, in particular, semidefinite programming, second order cone programming and special cases of inexact semidefinite programming. Strong duality results for the nonlinear problems studied are obtained via the Lagrangian duality. … Read more

Mean-risk objectives in stochastic programming

Traditional stochastic programming is risk neutral in the sense that it is concerned with the optimization of an expectation criteria. A common approach to addressing risk in decision making problems is to consider a weighted mean-risk criterion, where some dispersion statistic is used as a measure of risk. We investigate the computational suitability of various … Read more

A matrix generation approach for eigenvalue optimization

We study the extension of a column generation technique to eigenvalue optimization. In our approach we utilize the method of analytic center to obtain the query points at each iteration. A restricted master problem in the primal space is formed corresponding to the relaxed dual problem. At each step of the algorithm, an oracle is … Read more

An interior point cutting plane method for convex feasibility problem with second-order cone inequalities

Convex feasibility problem in general, is a problem of finding a point in a convex set contains a full dimensional ball and is contained in a compact convex set. We assume that the outer set is described by second-order cone inequalities and propose an analytic center cutting plane technique to solve this problem. We discuss … Read more

A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization

We introduce an algorithm to minimize a function of several variables with no convexity nor smoothness assumptions. The main peculiarity of our approach is the use of an the objective function model which is the difference of two piecewise affine convex functions. Bundling and trust region concepts are embedded into the algorithm. Convergence of the … Read more