Quantitative Stability Analysis of Stochastic Generalized Equations

We consider the solution of a system of stochastic generalized equations (SGE) where the underlying functions are mathematical expectation of random set-valued mappings. SGE has many applications such as characterizing optimality conditions of a nonsmooth stochastic optimization problem and a stochastic equilibrium problem. We derive quantitative continuity of expected value of the set-valued mapping with … Read more

Elastic-Mode Algorithms for Mathematical Programs with Equilibrium Constraints: Global Convergence and Stationarity Properties

The elastic-mode formulation of the problem of minimizing a nonlinear function subject to equilibrium constraints has appealing local properties in that, for a finite value of the penalty parameter, local solutions satisfying first- and second-order necessary optimality conditions for the original problem are also first- and second-order points of the elastic-mode formulation. Here we study … Read more

Stochastic Mathematical Programs with Equilibrium Constraints, Modeling and Sample Average Approximation

In this paper, we discuss the sample average approximation (SAA) method applied to a class of stochastic mathematical programs with variational (equilibrium) constraints. To this end, we briefly investigate piecewise structure and directional differentiability of both — the lower level equilibrium solution and objective integrant. We show almost sure convergence of optimal values, optimal solutions … Read more

Interior Methods for Mathematical Programs with Complementarity Constraints

This paper studies theoretical and practical properties of interior-penalty methods for mathematical programs with complementarity constraints. A framework for implementing these methods is presented, and the need for adaptive penalty update strategies is motivated with examples. The algorithm is shown to be globally convergent to strongly stationary points, under standard assumptions. These results are then … Read more

Nonlinear-Programming Reformulation of the Order-Value Optimization problem

Order-value optimization (OVO) is a generalization of the minimax problem motivated by decision-making problems under uncertainty and by robust estimation. New optimality conditions for this nonsmooth optimization problem are derived. An equivalent mathematical programming problem with equilibrium constraints is deduced. The relation between OVO and this nonlinear-programming reformulation is studied. Particular attention is given to … Read more

Stochastic Programming with Equilibrium Constraints

In this paper we discuss here-and-now type stochastic programs with equilibrium constraints. We give a general formulation of such problems and study their basic properties such as measurability and continuity of the corresponding integrand functions. We also discuss consistency and rates of convergence of sample average approximations of such stochastic problems. CitationSchool of Industrial and … Read more

Some Properties of Regularization and Penalization Schemes for MPECs

Some properties of regularized and penalized nonlinear programming formulations of mathematical programs with equilibrium constraints (MPECs) are described. The focus is on the properties of these formulations near a local solution of the MPEC at which strong stationarity and a second-order sufficient condition are satisfied. In the regularized formulations, the complementarity condition is replaced by … Read more

Numerical experience with solving MPECs as NLPs

This paper describes numerical experience with solving MPECs as NLPs on a large collection of test problems. The key idea is to use off-the-shelf NLP solvers to tackle large instances of MPECs. It is shown that SQP methods are very well suited to solving MPECs and at present outperform Interior Point solvers both in terms … Read more

Local convergence of SQP methods for Mathematical Programs with Equilibrium Constraints

Recently, it has been shown that Nonlinear Programming solvers can successfully solve a range of Mathematical Programs with Equilibrium Constraints (MPECs). In particular, Sequential Quadratic Programming (SQP) methods have been very successful. This paper examines the local convergence properties of SQP methods applied to MPECs. It is shown that SQP converges superlinearly under reasonable assumptions … Read more

The Penalty Interior Point Method fails to converge for Mathematical Programs with Equilibrium Constraints

This paper presents a small example for which the Penalty Interior Point Method converges to a non-stationary point. The reasons for this adverse behaviour are discussed. CitationNumerical Analysis Report NA/208, Department of Mathematics, University of Dundee, February 2002.ArticleDownload View PDF