A continuous GRASP to determine the relationship between drugs and adverse reactions

Adverse drug reactions (ADRs) are estimated to be one of the leading causes of death. Many national and international agencies have set up databases of ADR reports for the express purpose of determining the relationship between drugs and adverse reactions that they cause. We formulate the drug-reaction relationship problem as a continuous optimization problem and … Read more

The complexity of optimizing over a simplex, hypercube or sphere: a short survey

We consider the computational complexity of optimizing various classes of continuous functions over a simplex, hypercube or sphere. These relatively simple optimization problems have many applications. We review known approximation results as well as negative (inapproximability) results from the recent literature. CitationCentER Discussion paper 2006-85 Tilburg University THe NetherlandsArticleDownload View PDF

Speeding up continuous GRASP

Continuous GRASP (C-GRASP) is a stochastic local search metaheuristic for finding cost-efficient solutions to continuous global optimization problems subject to box constraints (Hirsch et al., 2006). Like a greedy randomized adaptive search procedure (GRASP), a C-GRASP is a multi-start procedure where a starting solution for local improvement is constructed in a greedy randomized fashion. In … Read more

Solving molecular distance geometry problems by global optimization algorithms

In this paper we consider global optimization algorithms based on multiple local searches for the Molecular Distance Geometry Problem (MDGP). Three distinct approaches (Multistart, Monotonic Basin Hopping, Population Basin Hopping) are presented and for each of them a computational analysis is performed. The results are also compared with those of two other approaches in the … Read more

A Particle Swarm Pattern Search Method for Bound Constrained Nonlinear Optimization

In this paper we develop, analyze, and test a new algorithm for the global minimization of a function subject to simple bounds without the use of derivatives. The underlying algorithm is a pattern search method, more specifically a coordinate search method, which guarantees convergence to stationary points from arbitrary starting points. In the optional search … Read more

Global optimization by continuous GRASP

We introduce a novel global optimization method called Continuous GRASP (C-GRASP) which extends Feo and Resende’s greedy randomized adaptive search procedure (GRASP) from the domain of discrete optimization to that of continuous global optimization. This stochastic local search method is simple to implement, is widely applicable, and does not make use of derivative information, thus … Read more

Efficiently packing unequal disks in a circle: a computational approach which exploits the continuous and combinatorial structure of the problem

Placing $N$ non-overlapping circles in a smallest container is a well known, widely studied problem that can be easily formulated as a mathematical programming model. Solving this problem is notoriously extremely hard. Recently a public contest has been held for finding putative optimal solutions to a special case in circle packing. The contest saw the … Read more

On the complexity of optimization over the standard simplex

We review complexity results for minimizing polynomials over the standard simplex and unit hypercube. In addition, we show that there exists a polynomial time approximation scheme (PTAS) for minimizing some classes of functions (including Lipschitz continuous functions) over the standard simplex. The main tools used in the analysis are Bernstein approximation and Lagrange interpolation on … Read more

A Note on Sparse SOS and SDP Relaxations for Polynomial Optimization Problems over Symmetric Cones

This short note extends the sparse SOS (sum of squares) and SDP (semidefinite programming) relaxation proposed by Waki, Kim, Kojima and Muramatsu for normal POPs (polynomial optimization problems) to POPs over symmetric cones, and establishes its theoretical convergence based on the recent convergence result by Lasserre on the sparse SOS and SDP relaxation for normal … Read more

Disk Packing in a Square: A New Global Optimization Approach

We present a new computational approach to the problem of placing $n$ identical non overlapping disks in the unit square in such a way that their radius is maximized. The problem has been studied in a large number of papers, both from a theoretical and from a computational point of view. In this paper we … Read more