A dimensionality reduction technique for unconstrained global optimization of functions with low effective dimensionality
We investigate the unconstrained global optimization of functions with low effective dimensionality, that are constant along certain (unknown) linear subspaces. Extending the technique of random subspace embeddings in [Wang et al., Bayesian optimization in a billion dimensions via random embeddings. JAIR, 55(1): 361–387, 2016], we study a generic Random Embeddings for Global Optimization (REGO) framework … Read more