A refined error analysis for fixed-degree polynomial optimization over the simplex

We consider fixed-degree polynomial optimization over the simplex. This problem is well known to be NP-hard, since it contains the maximum stable set problem in combinatorial optimization as a special case. In this paper, we consider a known upper bound by taking the minimum value on a regular grid, and a known lower bound based … Read more

Application of the Moment-SOS Approach to Global Optimization of the OPF Problem

Finding a global solution to the optimal power flow (OPF) problem is difficult due to its nonconvexity. A convex relaxation in the form of semidefinite programming (SDP) has attracted much attention lately as it yields a global solution in several practical cases. However, it does not in all cases, and such cases have been documented … Read more

GLODS: Global and Local Optimization using Direct Search

Locating and identifying points as global minimizers is, in general, a hard and time-consuming task. Difficulties increase when the derivatives of the functions defining the problem are not available for use. In this work, we propose a new class of methods suited for global derivative-free constrained optimization. Using direct search of directional type, the algorithm … Read more

Branching and Bounding Improvements for Global Optimization Algorithms with Lipschitz Continuity Properties

We present improvements to branch and bound techniques for globally optimizing functions with Lipschitz continuity properties by developing novel bounding procedures and parallelisation strategies. The bounding procedures involve nonconvex quadratic or cubic lower bounds on the objective and use estimates of the spectrum of the Hessian or derivative tensor, respectively. As the nonconvex lower bounds … Read more

Differerential Evolution methods based on local searches

In this paper we analyze the behavior of a quite standard Differential Evolution (DE) algorithm applied to the objective function transformed by means of local searches. First some surprising results are presented which concern the application of this method to standard test functions. Later we introduce an application to disk- and to sphere-packing problems, two … Read more

Mixed-Integer Nonlinear Optimization

Many optimal decision problems in scientific, engineering, and public sector applications involve both discrete decisions and nonlinear system dynamics that affect the quality of the final design or plan. These decision problems lead to mixed-integer nonlinear programming (MINLP) problems that combine the combinatorial difficulty of optimizing over discrete variable sets with the challenges of handling … Read more

Mixed-Integer Linear Methods for Layout-Optimization of Screening Systems in Recovered Paper Production

The industrial treatment of waste paper in order to regain valuable fibers from which recovered paper can be produced, involves several steps of preparation. One important step is the separation of stickies that are normally attached to the paper. If not properly separated, remaining stickies reduce the quality of the recovered paper or even disrupt … Read more

A Reliable Affine Relaxation Method for Global Optimization

An automatic method for constructing linear relaxations of constrained global optimization problems is proposed. Such a construction is based on affine and interval arithmetics and uses operator overloading. These linear programs have exactly the same numbers of variables and of inequality constraints as the given problems. Each equality constraint is replaced by two inequalities. This … Read more

Multi-Variate McCormick Relaxations

G. P. McCormick [Math Prog 1976] provides the framework for convex/concave relaxations of factorable functions, via rules for the product of functions and compositions of the form F(f(z)), where F is a univariate function. Herein, the composition theorem is generalized to allow multivariate outer functions F, and theory for the propagation of subgradients is presented. … Read more

Numerical Optimization of Eigenvalues of Hermitian Matrix Functions

The eigenvalues of a Hermitian matrix function that depends on one parameter analytically can be ordered so that each eigenvalue is an analytic function of the parameter. Ordering these analytic eigenvalues from the largest to the smallest yields continuous and piece-wise analytic functions. For multi-variate Hermitian matrix functions that depend on $d$ parameters analytically, the … Read more