Constraint aggregation for rigorous global optimization

In rigorous constrained global optimization, upper bounds on the objective function help to reduce the search space. Their construction requires finding a narrow box around an approximately feasible solution, verified to contain a feasible point. Approximations are easily found by local optimization, but the verification often fails. In this paper we show that even if … Read more

Solving a Huff-like Stackelberg problem on networks

This work deals with a Huff-like Stackelberg problem, where the leader facility wants to decide its location so that its profit is maximal after the competitor (the follower) also built its facility. It is assumed that the follower makes a rational decision, maximizing their profit. The inelastic demand is aggregated into the vertices of a … Read more

Efficient combination of two lower bound functions in univariate global optimization

We propose a new method for solving univariate global optimization problems by combining a lower bound function of ®BB method (see [1]) with the lower bound function of the method developed in [4]. The new lower bound function is better than the two lower bound functions. We add the convex/concave test and pruning step which … Read more

Mathematical Programming techniques in Water Network Optimization

In this article we survey mathematical programming approaches to problems in the field of water network optimization. Predominant in the literature are two different, but related problem classes. One can be described by the notion of network design, while the other is more aptly termed by network operation. The basic underlying model in both cases … Read more

A refined error analysis for fixed-degree polynomial optimization over the simplex

We consider fixed-degree polynomial optimization over the simplex. This problem is well known to be NP-hard, since it contains the maximum stable set problem in combinatorial optimization as a special case. In this paper, we consider a known upper bound by taking the minimum value on a regular grid, and a known lower bound based … Read more

Application of the Moment-SOS Approach to Global Optimization of the OPF Problem

Finding a global solution to the optimal power flow (OPF) problem is difficult due to its nonconvexity. A convex relaxation in the form of semidefinite programming (SDP) has attracted much attention lately as it yields a global solution in several practical cases. However, it does not in all cases, and such cases have been documented … Read more

GLODS: Global and Local Optimization using Direct Search

Locating and identifying points as global minimizers is, in general, a hard and time-consuming task. Difficulties increase when the derivatives of the functions defining the problem are not available for use. In this work, we propose a new class of methods suited for global derivative-free constrained optimization. Using direct search of directional type, the algorithm … Read more

Branching and Bounding Improvements for Global Optimization Algorithms with Lipschitz Continuity Properties

We present improvements to branch and bound techniques for globally optimizing functions with Lipschitz continuity properties by developing novel bounding procedures and parallelisation strategies. The bounding procedures involve nonconvex quadratic or cubic lower bounds on the objective and use estimates of the spectrum of the Hessian or derivative tensor, respectively. As the nonconvex lower bounds … Read more

Differerential Evolution methods based on local searches

In this paper we analyze the behavior of a quite standard Differential Evolution (DE) algorithm applied to the objective function transformed by means of local searches. First some surprising results are presented which concern the application of this method to standard test functions. Later we introduce an application to disk- and to sphere-packing problems, two … Read more

Mixed-Integer Nonlinear Optimization

Many optimal decision problems in scientific, engineering, and public sector applications involve both discrete decisions and nonlinear system dynamics that affect the quality of the final design or plan. These decision problems lead to mixed-integer nonlinear programming (MINLP) problems that combine the combinatorial difficulty of optimizing over discrete variable sets with the challenges of handling … Read more