Algorithms to Separate {0,1/2}-Chvatal-Gomory Cuts

Chvatal-Gomory cuts are among the most well-known classes of cutting planes for general integer linear programs (ILPs). In case the constraint multipliers are either 0 or 1/2, such cuts are known as {0, 1/2}-cuts. It has been proven by Caprara and Fischetti (1996) that separation of {0, 1/2}-cuts is NP-hard. In this paper, we study … Read more

Column basis reduction and decomposable knapsack problems

We propose a very simple preconditioning method for integer programming feasibility problems: replacing the problem b’   ≤   Ax   ≤   b,   x ∈ Zn with b’   ≤   (AU)y   ≤   b,   y ∈ Zn, where U is a unimodular matrix computed via basis reduction, to make the … Read more

Improving a Formulation of the Quadratic Knapsack Problem

The Quadratic Knapsack Problem can be formulated, using an idea of Glover, as a mixed 0-1 linear program with only 2n variables. We present a simple method for strengthening that formulation, which gives good results when the profit matrix is dense and non-negative. CitationWorking Paper, Department of Management Science, Lancaster University, May 2007.ArticleDownload View PDF

On the strength of cut-based inequalities for capacitated network design polyhedra

In this paper we study capacitated network design problems, differentiating directed, bidirected and undirected link capacity models. We complement existing polyhedral results for the three variants by new classes of facet-defining valid inequalities and unified lifting results. For this, we study the restriction of the problems to a cut of the network. First, we show … Read more

Separation Algorithms for 0-1 Knapsack Polytopes

Valid inequalities for 0-1 knapsack polytopes often prove useful when tackling hard 0-1 Linear Programming problems. To use such inequalities effectively, one needs separation algorithms for them, i.e., routines for detecting when they are violated. We show that the separation problems for the so-called extended cover and weight inequalities can be solved exactly in O(nb) … Read more

A Computational Analysis of Lower Bounds for Big Bucket Production Planning Problems

In this paper, we analyze a variety of approaches to obtain lower bounds for multi-level production planning problems with big bucket capacities, i.e., problems in which multiple items compete for the same resources. We give an extensive survey of both known and new methods, and also establish relationships between some of these methods that, to … Read more

An integer programming approach for linear programs with probabilistic constraints

Linear programs with joint probabilistic constraints (PCLP) are difficult to solve because the feasible region is not convex. We consider a special case of PCLP in which only the right-hand side is random and this random vector has a finite distribution. We give a mixed-integer programming formulation for this special case and study the relaxation … Read more

A strengthened formulation for the open pit mine production scheduling problem

We present a strengthened integer programming formulation for the open pit mine production scheduling problem, where the precedence and production constraints are combined to form 0-1 knapsack inequalities. Addition of corresponding knapsack cover inequalities decreases the computational requirements to obtain the optimal integer solution, in many cases by a significant margin. CitationThe University of Melbourne, … Read more

Experiments in Robust Portfolio Optimization

We present experimental results on portfolio optimization problems with return errors under the robust optimization framework. We use several a histogram-like model for return deviations, and a model that allows correlation among errors, together with a cutting-plane algorithm which proves effective for large, real-life data sets. CitationColumbia Center for Financial Engineering Report 2007-01 Columbia University, … Read more

The wireless network jamming problem

In adversarial environments, disabling the communication capabilities of the enemy is a high priority. We introduce the problem of determining the optimal number and locations for a set of jamming devices in order to neutralize a wireless communication network. This problem is known as the WIRELESS NETWORK JAMMING PROBLEM. We develop several mathematical programming formulations … Read more