Newton-KKT Interior-Point Methods for Indefinite Quadratic Programming

Two interior-point algorithms are proposed and analyzed, for the (local) solution of (possibly) indefinite quadratic programming problems. They are of the Newton-KKT variety in that (much like in the case of primal-dual algorithms for linear programming) search directions for the `primal´ variables and the Karush-Kuhn-Tucker (KKT) multiplier estimates are components of the Newton (or quasi-Newton) … Read more

Dual versus primal-dual interior-point methods for linear and conic programming

We observe a curious property of dual versus primal-dual path-following interior-point methods when applied to unbounded linear or conic programming problems in dual form. While primal-dual methods can be viewed as implicitly following a central path to detect primal infeasibility and dual unboundedness, dual methods are implicitly moving {\em away} from the analytic center of … Read more

Interior point methods for large-scale linear programming

We discuss interior point methods for large-scale linear programming, with an emphasis on methods that are useful for problems arising in telecommunications. We give the basic framework of a primal-dual interior point method, and consider the numerical issues involved in calculating the search direction in each iteration, including the use of factorization methods and/or preconditioned … Read more

A NEW SELF-CONCORDANT BARRIER FOR THE HYPERCUBE

In this paper we introduce a new barrier function $\sum\limits_{i=1}^n(2x_i-1)[\ln{x_i}-\ln(1-x_i)]$ to solve the following optimization problem: $\min\,\, f(x)$ subject to: $Ax=b;\;\;0\leq x\leq e$. We show that this function is a $(3/2)n$-self-concordant barrier on the hypercube $[0,1]^n$. We prove that the central path is well defined and that under an additional assumption on the objective function, … Read more

Interior Point Trajectories and a Homogeneous Model for Nonlinear Complementarity Problems over Symmetric Cones

We study the continuous trajectories for solving monotone nonlinear mixed complementarity problems over symmetric cones. While the analysis in Faybusovich (1997) depends on the optimization theory of convex log-barrier functions, our approach is based on the paper of Monteiro and Pang (1998), where a vast set of conclusions concerning continuous trajectories is shown for monotone … Read more

Second-order Cone Programming Methods for Total Variation-based Image Restoration

In this paper we present optimization algorithms for image restoration based on the total variation (TV) minimization framework of L. Rudin, S. Osher and E. Fatemi (ROF). Our approach formulates TV minimization as a second-order cone program which is then solved by interior-point algorithms that are efficient both in practice (using nested dissection and domain … Read more

Sensitivity analysis in linear optimization: Invariant support set intervals

Sensitivity analysis is one of the most nteresting and preoccupying areas in optimization. Many attempts are made to investigate the problem’s behavior when the input data changes. Usually variation occurs in the right hand side of the constraints and/or the objective function coefficients. Degeneracy of optimal solutions causes considerable difficulties in sensitivity analysis. In this … Read more

Numerical experiments with an interior-exterior point method for nonlinear programming

The paper presents an algorithm for solving nonlinear programming problems. The algorithm is based on the combination of interior and exterior point methods. The latter is also known as the primal-dual nonlinear rescaling method. The paper shows that in certain cases when the interior point method fails to achieve the solution with the high level … Read more

Convergence analysis of a primal-dual interior-point method for nonlinear programming

We analyze a primal-dual interior-point method for nonlinear programming. We prove the global convergence for a wide class of problems under the standard assumptions on the problem. CitationTechnical Report ORFE-04-07, Department of ORFE, Princeton University, Princeton, NJ 08544ArticleDownload View PDF

On exploiting structure induced when modelling an intersection of cones in conic optimization

Conic optimization is the problem of optimizing a linear function over an intersection of an affine linear manifold with the Cartesian product of convex cones. However, many real world conic models involves an intersection rather than the product of two or more cones. It is easy to deal with an intersection of one or more … Read more