A Computational Study for Piecewise Linear Relaxations of Mixed-Integer Nonlinear Programs

Solving mixed-integer nonlinear problems by means of piecewise linear relaxations can be a reasonable alternative to the commonly used spatial branch-and-bound. These relaxations have been modeled by various mixed-integer models in recent decades. The idea is to exploit the availability of mature solvers for mixed-integer problems. In this work, we compare different reformulations in terms … Read more

A hybrid branch-and-bound and interior-point algorithm for stochastic mixed-integer nonlinear second-order cone programming

One of the chief attractions of stochastic mixed-integer second-order cone programming is its diverse applications, especially in engineering (Alzalg and Alioui, {\em IEEE Access}, 10:3522-3547, 2022). The linear and nonlinear versions of this class of optimization problems are still unsolved yet. In this paper, we develop a hybrid optimization algorithm coupling branch-and-bound and primal-dual interior-point … Read more

Robust Optimization Under Controllable Uncertainty

Applications for optimization with uncertain data in practice often feature a possibility to reduce the uncertainty at a given query cost, e.g., by conducting measurements, surveys, or paying a third party in advance to limit the deviations. To model this type of applications we introduce the concept of optimization problems under controllable uncertainty (OCU). For … Read more

PaPILO: A Parallel Presolving Library for Integer and Linear Optimization with Multiprecision Support

Presolving has become an essential component of modern MIP solvers both in terms of computational performance and numerical robustness. In this paper we present PaPILO (https://github.com/scipopt/papilo), a new C++ header-only library that provides a large set of presolving routines for MIP and LP problems from the literature. The creation of \papilo was motivated by the … Read more

Exploiting user-supplied Decompositions inside Heuristics

Numerous industrial fields, like supply chain management, face mixed-integer optimization problems on a regular basis. Such problems typically show a sparse structure and vary in size, as well as complexity. However, in order to satisfy customer demands, it is crucial to find good solutions to all such problems quickly. Current research often focuses on the … Read more

Improved Rank-One-Based Relaxations and Bound Tightening Techniques for the Pooling Problem

The pooling problem is a classical NP-hard problem in the chemical process and petroleum industries. This problem is modeled as a nonlinear, nonconvex network flow problem in which raw materials with different specifications are blended in some intermediate tanks, and mixed again to obtain the final products with desired specifications. The analysis of the pooling … Read more

Mixed-Integer Programming Approaches to Generalized Submodular Optimization and its Applications

Submodularity is an important concept in integer and combinatorial optimization. A classical submodular set function models the utility of selecting homogenous items from a single ground set, and such selections can be represented by binary variables. In practice, many problem contexts involve choosing heterogenous items from more than one ground set or selecting multiple copies … Read more

An approximation algorithm for multi-objective mixed-integer convex optimization

In this article we introduce an algorithm that approximates Pareto fronts of multiobjective mixed-integer convex optimization problems. The algorithm constructs an inner and outer approximation of the front exploiting the convexity of the patches and is applicable to problems with an arbitrary number of criteria. In the algorithm, the problem is decomposed into patches, which … Read more

Variable Selection for Kernel Two-Sample Tests

We consider the variable selection problem for two-sample tests, aiming to select the most informative variables to distinguish samples from two groups. To solve this problem, we propose a framework based on the kernel maximum mean discrepancy (MMD). Our approach seeks a group of variables with a pre-specified size that maximizes the variance-regularized MMD statistics. … Read more

Γ-robust Optimization of Project Scheduling Problems

\(\) In this paper, we investigate the problem of finding a robust baseline schedule for the project scheduling problem under uncertain process times. We assume that the probability distribution for the duration is unknown but an estimation together with an interval in which this time can vary is given. At most $ \Gamma $ of … Read more